3 resultados para Vns
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Zusammenfassung Das ventrale Nervensystem (vNS) von Drosophila melanogaster entsteht aus zwei verschiedenen Populationen von Vorläufern, den mesektodermalen oder Mittellinien (ML)-Vorläufern und den neuroektodermalen Vorläufern oder Neuroblasten (NBs). Beide Populationen unterscheiden sich in vielen Aspekten, wie z.B. Genexpression, Teilungsverhalten und Zellstammbaum. Die ca. 30 NBs pro Hemisegment delaminieren als Einzelzellen aus dem Neuroektoderm und bilden ein invariantes subepidermales Muster in der neu entstandenen neuralen Zellschicht aus. Sie sind dort aufgrund ihrer Lage und der Expression spezifischer molekularer Marker individuell identifizierbar. Um die Mechanismen zu verstehen, die zur Determination und Differenzierung von ZNS Zellen führen, ist es eine Grundvoraussetzung, die Zellstammbäume aller Vorläufer zu kennen. Unter Verwendung des lipophilen in vivo Fluoreszenzfarbstoffs DiI wurden in früheren Arbeiten die Zellstammbäume der ML-Vorläufer und von 17 NBs, die aus der ventralen Hälfte des Neuroektoderms stammten, beschrieben. In der hier vorgelegten Arbeit wurden die Zellstammbäume von 13 NBs, die aus dem dorsalen Teil des Neuroektoderms delaminierten, beschrieben und 12 davon identifizierten Vorläufern zugeordnet. Darüber hinaus wurde ein bisher nicht beschriebener NB (NB 1-3) identifiziert und anhand morphologischer und molekularer Kriterien charakterisiert. Insgesamt produzierten die NBs ca. 120 Neurone und 22 bis 27 Gliazellen pro Hemineuromer, die in eine systematische Terminologie eingefügt wurden. Insgesamt besteht damit ein Neuromer des embryonalen vNS von Drosophila aus ca. 700 Neuronen (350 pro Hemineuromer) und 60 Gliazellen (30 pro Hemineuromer), die von NBs abstammen. Hinzu kommen ca. 12 ML-Neurone und 2 bis 4 ML-Glia pro Neuromer. Damit stammten die meisten Gliazellen im embryonalen vNS von Drosophila von NBs ab, die aus dem dorsalen Neuroektoderm hervorgingen. Zwei dieser NBs hatten ausschließlich gliale Nachkommen (NB 6-4A, GP) und fünf generierten sowohl Glia als auch Neurone (NBs 1-3, 2-5, 5-6, 6-4T, 7-4). Die übrigen sieben Zellstammbäume (NBs 2-4, 3-3, 3-5, 4-3, 4-4, 5-4, Klon y) waren rein neuronal. Es war ferner möglich, das bereits bekannte laterale Cluster von even-skipped exprimierenden Zellen (EL) dem Stammbaum von NB 3-3 zuzuordnen. Zusammen mit den zuvor beschriebenen Klonen sind damit mehr als 90% der thorakalen und abdominalen Zellstammbäume im embryonalen vNS von Drosophila bekannt. Darüber hinaus sind zuvor identifizierte Neurone und die meisten Gliazellen einem bestimmten Stammbaum zugeordnet und damit mit einer ontogenetischen Geschichte versehen. Dieser komplette Datensatz liefert eine Grundlage für die Interpretation mutanter Phänotypen und für zukünftige Untersuchungen über die Festlegung von Zellschicksalen und die Differenzierung von Zellen. Dies könnte dazu beitragen, das Verhältnis zwischen Herkunft der Zelle, Genexpression und Zellfunktion besser zu verstehen. Die wesentliche Funktion neuronaler Zellen ist die Integration und Weiterleitung von elektrischen Signalen. Mithin ist die Ausbildung elektrischer Eigenschaften (Elektrogenese) ein wesentlicher Aspekt der neuronalen Entwicklung. Um dabei zelltypspezifische Unterschiede zu finden, ist die Arbeit an definierten Zellpopulationen eine zwingende Voraussetzung. Es wurde daher hier ein in vitro System verwendet, das die selektive Kultivierung identifizierter embryonaler Vorläufer unter verschiedenen Bedingungen erlaubt. Da die Zellstammbäume der ML-Vorläufer besonders einfach sind und die ML-Zellen zudem in vielen Aspekten von den neuroektodermalen Zellen verschieden sind (s.o.), wurden die ML-Neurone als erstes Modellsystem ausgewählt. Unter Verwendung der Patch-clamp Technik wurden die in dieser definierten Zellpopulation auftretenden Ionenströme detailliert beschrieben. ML-Neurone exprimierten zumindest zwei verschiedene Typen von spannungsgesteuerten K+-Strömen (IA und IK), einen spannungsabhängigen Na+-Strom und zwei spannungsgesteuerte Ca(Ba)2+-Ströme. Darüber hinaus reagierten sie auf die Neurotransmitter ACh und GABA. Die meisten Ionenströme in den ML-Neuronen waren, trotz ihrer ontogenetischen Besonderheit, annähernd identisch mit denen, die in anderen Drosophila-Neuronen gefunden wurden. Ihnen fehlte allerdings eine anhaltende Komponente des Na+-Stroms, und sie waren homogen in ihrer Aktivität. Selbst bei anhaltender elektrischer Stimulation generierten sie immer nur ein Aktionspotential. Sie sind daher möglicherweise spezifisch hinsichtlich ihrer Signalleitungseigenschaften. Interessanterweise zeigte sich durch Verwendung verschiedener Kulturbedingungen, daß die Expression der spannungsgesteuerten K+-Kanäle weitgehend zellautonom erfolgte, während die Expression der anderen Ströme stark durch das Vohandensein von Neuritenkontakten beeinflußt wurde. Vorläufige Untersuchungen lassen darauf schließen, daß der involvierte molekulare Mechanismus unabhängig von synaptischer Transmission ist. In einer Art 'Ausblick' wurde schließlich die Validität von in vitro Ableitungen durch Analyse spannungsgesteuerter K+-Ströme in einer neuen in situ Präparation geprüft, die verschiedene Bereiche des Drosophila-ZNS für elektrophysiologische Untersuchungen zugänglich macht. Damit ist ein experimentelles System etabliert, daß den direkten Vergleich von in vitro und in situ Daten an definierten Zellpopulationen ermöglichen sollte.
Resumo:
In Vertebraten und Insekten ist während der frühen Entwicklung des zentralen Nervensystems (ZNS), welches sich aus dem Gehirn und dem ventralen Nervensystem (VNS) zusammensetzt, die Unterteilung des Neuroektoderms (NE) in diskrete Genexpressions-Domänen entscheidend für die korrekte Spezifizierung neuraler Stammzellen. In Drosophila wird die Identität dieser Stammzellen (Neuroblasten, NB) festgelegt durch die positionellen Informationen, welche von den Produkten früher Musterbildungsgene bereitgestellt werden und das Neuroektoderm in anteroposteriorer (AP) und dorsoventraler (DV) Achse unterteilen. Die molekulargenetischen Mechanismen, welche der DV-Regionalisierung zugrunde liegen, wurden ausführlich im embryonalen VNS untersucht, sind für das Gehirn jedoch weitestgehend unverstanden. rnIm Rahmen dieser Arbeit wurden neue Erkenntnisse bezüglich der genetischen Mechanismen gewonnen, welche die frühembryonale Anlage des Gehirns in DV-Achse unterteilen. So konnte gezeigt werden, dass das cephale Lückengen empty spiracles (ems), das Segmentpolaritätsgen engrailed (en), sowie der „Epidermal growth factor receptor“ (EGFR) und das Gen Nk6 homeobox (Nkx6) für Faktoren codieren, die als zentrale Regulatoren die DV Musterbildung in der Gehirnanlage kontrollieren. Diese Faktoren interagieren zusammen mit den ebenso evolutionär konservierten Homöobox-Genen ventral nervous system defective (vnd), intermediate neuroblasts defective (ind) und muscle segment homeobox (msh) in einem komplexen, regulatorischen DV-Netzwerk. Die im Trito (TC)- und Deutocerebrum (DC) entschlüsselten genetischen Interaktionen basieren überwiegend auf wechselseitiger Repression. Dementsprechend sorgen 1) Vnd und Ems durch gegenseitige Repression für eine frühe DV-Unterteilung des NE, und 2) wechselseitige Repression zwischen Nkx6 und Msh, als auch zwischen Ind und Msh für die Aufrechterhaltung der Grenze zwischen intermediärem und dorsalem NE. 3) Sowohl Ind als auch Msh sind in der Lage, die Expression von vnd zu inhibieren. Ferner konnte gezeigt werden, dass Vnd durch Repression von Msh als positiver Regulator von Nkx6 fungiert. Überdies beeinflusst Vnd die Expression von ind in segment-spezifischer Art und Weise: Vnd reprimiert ind-Expression im TC, sorgt jedoch für eine positive Regulation von ind im DC durch Repression von Msh. Auch der EGFR-Signalweg ist an der frühen DV-Regionalisierung des Gehirns beteiligt, indem er durch positive Regulation der msh-Repressoren Vnd, Ind und Nkx6 dazu beiträgt, dass die Expression von msh auf dorsales NE beschränkt bleibt. Ferner stellte sich heraus, dass das AP-Musterbildungsgen ems die Expression der DV-Gene kontrolliert und umgekehrt: Ems ist für die Aktivierung von Nkx6, ind und msh in TC und DC erforderlich ist, während Nkx6 und Ind zu einem späteren Zeitpunkt benötigt werden, um ems im intermediären DC gemeinsam zu reprimieren. Überdies konnte gezeigt werden, dass das Segmentpolaritätsgen en Aspekte der Expression von vnd, ind und msh in segment-spezifischer Art und Weise reguliert. En reprimiert ind und msh, hält jedoch vnd-Expression im DC aufrecht; im TC wird En benötigt, um die Expression von Msh herunter zu regulieren und somit die Aktivierung von ind dort zu ermöglichen.rnrnZusammengenommen zeigen diese Ergebnisse, dass AP Musterbildungsfaktoren in umfangreichen Maß die Expression der DV Gene im Gehirn (und VNS) kontrollieren. Ferner deuten diese Daten darauf hin, dass sich das „Konzept der ventralen Dominanz“, welches für die DV-Musterbildung im VNS postuliert wurde, nicht auf das genregulatorische Netzwerk im Gehirn übertragen lässt, da Interaktionen zwischen den beteiligten Faktoren hauptsächlich auf wechselseitiger (und nicht einseitiger) Repression basieren. Zudem scheint das Konzept der ventralen Dominanz auch für das VNS nicht uneingeschränkt zu gelten, da in dieser Arbeit u.a. gezeigt werden konnte, dass dorsal exprimiertes Msh in der Lage ist, intermediäres ind zu reprimieren. Interessanterweise ist gegenseitige Repression von Homöodomänen-Proteinen im sich entwickelnden Neuralrohr von Vertebraten weit verbreitet und darüberhinaus essenziell für den Aufbau diskreter DV-Vorläuferdomänen, und weist insofern eine große Ähnlichkeit zu den in dieser Arbeit beschriebenen DV-Musterbildungsvorgängen im frühembryonalen Fliegengehirn auf.rn
Resumo:
Eine wichtige Voraussetzung für das Verständnis der Spezifizierungsmechanismen unterschiedlicher Zelltypen im embryonalen Gehirn ist die detaillierte Kenntnis des neuroektodermalen Ursprungs seiner neuralen Stammzellen (Neuroblasten, NB), sowie der Morphologie und zellulären Komposition der daraus hervorgehenden Zellstammbäume (ZSBe). In der vorliegenden Arbeit wurde die Entstehung und Topologie von 21 embryonalen ZSBen im anteriorsten Gehirnteil, dem Protocerebrum, charakterisiert, mit besonderem Fokus auf solche ZSBe, die den Pilzkörper konstituieren. Pilzkörper sind prominente, paarige Neuropilzentren, die eine wichtige Rolle bei der Verarbeitung olfaktorischer Informationen, beim Lernen und bei der Gedächtnisbildung spielen. In dieser Arbeit konnte erstmalig die Embryonalentwicklung der Pilzkörper ab dem Zeitpunkt der Entstehung ihrer NBen im procephalen Neuroektoderm (pNE), bis hin zum funktionellen Gehirnzentrum in der frühen Larve auf Ebene individueller ZSBe bzw. einzelner Neurone beschrieben werden. Mittels der klonalen Di-Markierungstechnik konnte ich zeigen, dass die vier NBen der Pilzkörper (PKNBen) jeder Gehirnhemisphäre innerhalb des NE aus dem ventralen Bereich der mitotischen Domäne B (δB) hervorgehen. Ein in diesem Bereich liegendes proneurales Feld beherbergt etwa 10-12 Zellen, die alle das Potential haben sich zu PKNBen zu entwickeln. Des Weiteren zeigen diese Untersuchungen, dass die PKNBen (und weitere NBen der δB) aus benachbarten NE-Zellen hervorgehen. Dieser Befund impliziert, dass der Mechanismus der lateralen Inhibition in diesem Bereich des NE keine Rolle spielt. Weiterhin stellte sich heraus, dass jeder PKNB eine ihm eigene Position im sich entwickelnden Pilzkörperkortex besetzt und eine spezifische Kombination der Transkriptionsfaktoren Dachshund, Eyeless und Retinal homeobox exprimiert. Dadurch konnte jeder der vier PKNBen in den betreffenden frühembryonalen NB-Karten einem der ca. 105 NBen pro Gehirnhemisphäre zugeordnet werden. Die PKNBen bringen individuelle ZSBe hervor, die Pilzkörper-intrinsische γ-Neurone beinhalten, aber auch jeweils charakteristische Sets an Interneuronen, die nicht am Aufbau des Pilzkörpers beteiligt sind. Diese verschiedenen Neuronentypen entstehen in einer zeitlichen Abfolge, die für jeden PKNBen spezifisch ist. Ihre embryonalen ZSBe sind aber nicht nur durch individuelle Sets an frühgeborenen ni-Neuronen charakterisiert, sondern auch durch spezifische Unterschiede in der Anzahl ihrer γ-Neurone, welche jedoch, wie ich zeigen konnte, nicht durch Apoptose reguliert wird. Weiterhin konnte ich zeigen, dass γ-Neurone, in einer PKNB Klon-abhängigen Weise, spezifische Unterschiede in der räumlich-zeitlichen Innervation des Pedunkels, der Calyx und der Loben aufweisen. Im Weiteren wurde die Expression verschiedener molekularer Marker in diesen ZSBen charakterisiert, u.a. die Expression verschiedener Gal4-Fliegenstämme, und solcher Transkriptionsfaktoren, die eine wichtige Rolle bei der temporären Spezifizierung im VNS spielen. So werden hb, Kr, pdm1 auch in Nachkommenzellen der PKNBen exprimiert und haben möglicherweise eine Funktion bei ihrer temporären Spezifizierung. Diese Arbeit gibt auch erstmalig Einblick in die vollständige spätembryonale/frühlarvale Morphologie anderer protocerebraler Gehirnzellstammbäume aus δB und δ1. Die Beschreibungen dieser ZSBe beinhalten Angaben zu deren Zellzahl, Zelltypen, der Lage der ZSBe im Gehirn, axonalen/dendritischen Projektionsmustern sowie dem Entstehungsort des NBen.