3 resultados para Topsoil

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mining and processing of metal ores are important causes of soil and groundwater contamination in many regions worldwide. Metal contaminations are a serious risk for the environment and human health. The assessment of metal contaminations in the soil is therefore an important task. A common approach to assess the environmental risk emanating from inorganic contaminations to soil and groundwater is the use of batch or column leaching tests. In this regard, the suitability of leaching tests is a controversial issue. In the first part of this work the applicability and comparability of common leaching tests in the scope of groundwater risk assessment of inorganic contamination is reviewed and critically discussed. Soil water sampling methods (the suction cup method and centrifugation) are addressed as an alternative to leaching tests. Reasons for limitations of the comparability of leaching test results are exposed and recommendations are given for the expedient application of leaching tests for groundwater risk assessment. Leaching tests are usually carried out in open contact with the atmosphere disregarding possible changes of redox conditions. This can affect the original metal speciation and distribution, particularly when anoxic samples are investigated. The influence of sample storage on leaching test results of sulfide bearing anoxic material from a former flotation dump is investigated in a long-term study. Since the oxidation of the sulfide-bearing samples leads to a significant overestimation of metal release, a feasible modification for the conduction of common leaching tests for anoxic material is proposed, where oxidation is prevented efficiently. A comparison of leaching test results to soil water analyzes have shown that the modified saturation soil extraction (SSE) is found to be the only of the tested leaching procedures, which can be recommended for the assessment of current soil water concentrations at anoxic sites if direct investigation of the soil water is impossible due to technical reasons. The vertical distribution and speciation of Zn and Pb in the flotation residues as well as metal concentrations in soil water and plants were investigated to evaluate the environmental risk arising from this site due to the release of metals. The variations in pH and inorganic C content show an acidification of the topsoil with pH values down to 5.5 in the soil and a soil water pH of 6 in 1 m depth. This is due to the oxidation of sulfides and depletion in carbonates. In the anoxic subsoil pH conditions are still neutral and soil water collected with suction cups is in equilibrium with carbonate minerals. Results from extended x-ray absorption fine-structure (EXAFS) spectroscopy confirm that Zn is mainly bound in sphalerite in the subsoil and weathering reactions lead to a redistribution of Zn in the topsoil. A loss of 35% Zn and S from the topsoil compared to the parent material with 10 g/kg Zn has been observed. 13% of total Zn in the topsoil can be regarded as mobile or easily mobilizable according to sequential chemical extractions (SCE). Zn concentrations of 10 mg/L were found in the soil water, where pH is acidic. Electron supply and the buffer capacity of the soil were identified as main factors controlling Zn mobility and release to the groundwater. Variable Pb concentrations up to 30 µg/L were observed in the soil water. In contrast to Zn, Pb is enriched in the mobile fraction of the oxidized topsoil by a factor of 2 compared to the subsoil with 2 g/kg Pb. 80% of the cation exchange capacity in the topsoil is occupied by Pb. Therefore, plant uptake and bioavailability are of major concern. If the site is not prevented from proceeding acidification in the future, a significant release of Zn, S, and Pb to the groundwater has to be expected. Results from this study show that the assessment of metal release especially from sulfide bearing anoxic material requires an extensive comprehension of leaching mechanisms on the one hand and on weathering processes, which influence the speciation and the mobility of metals, on the other hand. Processes, which may change redox and pH conditions in the future, have to be addressed to enable sound decisions for soil and groundwater protection and remediation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Successful conservation of tropical montane forest, one of the most threatened ecosystems on earth, requires detailed knowledge of its biogeochemistry. Of particular interest is the response of the biogeochemical element cycles to external influences such as element deposition or climate change. Therefore the overall objective of my study was to contribute to improved understanding of role and functioning of the Andean tropical montane forest. In detail, my objectives were to determine (1) the role of long-range transported aerosols and their transport mechanisms, and (2) the role of short-term extreme climatic events for the element budget of Andean tropical forest. In a whole-catchment approach including three 8-13 ha microcatchments under tropical montane forest on the east-exposed slope of the eastern cordillera in the south Ecuadorian Andes at 1850-2200 m above sea level I monitored at least in weekly resolution the concentrations and fluxes of Ca, Mg, Na, K, NO3-N, NH4-N, DON, P, S, TOC, Mn, and Al in bulk deposition, throughfall, litter leachate, soil solution at the 0.15 and 0.3 m depths, and runoff between May 1998 and April 2003. I also used meteorological data from my study area collected by cooperating researchers and the Brazilian meteorological service (INPE), as well as remote sensing products of the North American and European space agencies NASA and ESA. My results show that (1) there was a strong interannual variation in deposition of Ca [4.4-29 kg ha-1 a-1], Mg [1.6-12], and K [9.8-30]) between 1998 and 2003. High deposition changed the Ca and Mg budgets of the catchments from loss to retention, suggesting that the additionally available Ca and Mg was used by the ecosystem. Increased base metal deposition was related to dust outbursts of the Sahara and an Amazonian precipitation pattern with trans-regional dry spells allowing for dust transport to the Andes. The increased base metal deposition coincided with a strong La Niña event in 1999/2000. There were also significantly elevated H+, N, and Mn depositions during the annual biomass burning period in the Amazon basin. Elevated H+ deposition during the biomass burning period caused elevated base metal loss from the canopy and the organic horizon and deteriorated already low base metal supply of the vegetation. Nitrogen was only retained during biomass burning but not during non-fire conditions when deposition was much smaller. Therefore biomass burning-related aerosol emissions in Amazonia seem large enough to substantially increase element deposition at the western rim of Amazonia. Particularly the related increase of acid deposition impoverishes already base-metal scarce ecosystems. As biomass burning is most intense during El Niño situations, a shortened ENSO cycle because of global warming likely enhances the acid deposition at my study forest. (2) Storm events causing near-surface water flow through C- and nutrient-rich topsoil during rainstorms were the major export pathway for C, N, Al, and Mn (contributing >50% to the total export of these elements). Near-surface flow also accounted for one third of total base metal export. This demonstrates that storm-event related near-surface flow markedly affects the cycling of many nutrients in steep tropical montane forests. Changes in the rainfall regime possibly associated with global climate change will therefore also change element export from the study forest. Element budgets of Andean tropical montane rain forest proved to be markedly affected by long-range transport of Saharan dust, biomass burning-related aerosols, or strong rainfalls during storm events. Thus, increased acid and nutrient deposition and the global climate change probably drive the tropical montane forest to another state with unknown consequences for its functions and biological diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In spite of the higher toxicity of oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) than of their parent-PAHs, there are only a few studies of the concentrations, composition pattern, sources and fate of OPAHs in soil, the presumably major environmental sink of OPAHs. This is related to the fact that there are only few available methods to measure OPAHs together with PAHs in soil. rnThe objectives of my thesis were to (i) develop a GC/MS-based method to measure OPAHs and their parent-PAHs in soils of different properties and pollution levels, (ii) apply the method to soils from Uzbekistan and Slovakia and (iii) investigate into the fate of OPAHs, particularly their vertical transport in soilrnI optimized and fully evaluated an analytical method based on pressurized liquid extraction, silica gel column chromatographic fractionation of extracted compounds into alkyl-/parent-PAH and OPAH fractions, silylation of hydroxyl-/carboxyl-OPAHs with N,O-bis(trimethylsilyl)trifluoracetamide and GC/MS quantification of the target compounds. The method was targeted at 34 alkyl-/parent-PAHs, 7 carbonyl-OPAHs and 19 hydroxyl-/carboxyl-OPAHs. I applied the method to 11 soils from each of the Angren industrial region (which hosts a coal mine, power plant, rubber factory and gold refinery) in Uzbekistan and in the city of Bratislava, the densely populated capital of Slovakia.rnRecoveries of five carbonyl-OPAHs in spike experiments ranged between 78-97% (relative standard deviation, RSD, 5-12%), while 1,2-acenaphthenequinone and 1,4-naphtho-quinone had recoveries between 34-44%% (RSD, 19-28%). Five spiked hydroxyl-/carboxyl-OPAHs showed recoveries between 36-70% (RSD, 13-46%), while others showed recoveries <10% or were completely lost. With the optimized method, I determined, on average, 103% of the alkyl-/parent-PAH concentrations in a certified reference material.rnThe ∑OPAHs concentrations in surface soil ranged 62-2692 ng g-1 and those of ∑alkyl-/parent-PAHs was 842-244870 ng g-1. The carbonyl-OPAHs had higher concentrations than the hydroxyl-/carboxyl-OPAHs. The most abundant carbonyl-OPAHs were consistently 9-fluorenone (9-FLO), 9,10-anthraquinone (9,10-ANQ), 1-indanone (1-INDA) and benzo[a]anthracene-7,12-dione (7,12-B(A)A) and the most abundant hydroxyl-/carboxyl-OPAH was 2-hydroxybenzaldehyde. The concentrations of carbonyl-OPAHs were frequently higher than those of their parent-PAHs (e.g., 9-FLO/fluorene >100 near a rubber factory in Angren). The concentrations of OPAHs like those of their alkyl-/parent-PAHs were higher at locations closer to point sources and the OPAH and PAH concentrations were correlated suggesting that both compound classes originated from the same sources. Only for 1-INDA and 2-biphenylcarboxaldehyde sources other than combustion seemed to dominate. Like those of the alkyl-/parent-PAHs, OPAH concentrations were higher in topsoils than subsoils. Evidence of higher mobility of OPAHs than their parent-PAHs was provided by greater subsoil:topsoil concentration ratios of carbonyl-OPAHs (0.41-0.82) than their parent-PAHs (0.41-0.63) in Uzbekistan. This was further backed by the consistently higher contribution of more soluble 9-FLO and 1-INDA to the ∑carbonyl-OPAHs in subsoil than topsoil at the expense of 9,10-ANQ, 7,12-B(A)A and higher OPAH/parent-PAH concentration ratios in subsoil than topsoil in Bratislava.rnWith this thesis, I contribute a suitable method to determine a large number of OPAHs and PAHs in soil. My results demonstrate that carbonyl-OPAHs are more abundant than hydroxyl-/carboxyl-OPAHs and OPAH concentrations are frequently higher than parent-PAH concentrations. Furthermore, there are indications that OPAHs are more mobile in soil than PAHs. This calls for appropriate legal regulation of OPAH concentrations in soil.