6 resultados para Time-Fractional Multiterm Diffusion Equation
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Natürliche hydraulische Bruchbildung ist in allen Bereichen der Erdkruste ein wichtiger und stark verbreiteter Prozess. Sie beeinflusst die effektive Permeabilität und Fluidtransport auf mehreren Größenordnungen, indem sie hydraulische Konnektivität bewirkt. Der Prozess der Bruchbildung ist sowohl sehr dynamisch als auch hoch komplex. Die Dynamik stammt von der starken Wechselwirkung tektonischer und hydraulischer Prozesse, während sich die Komplexität aus der potentiellen Abhängigkeit der poroelastischen Eigenschaften von Fluiddruck und Bruchbildung ergibt. Die Bildung hydraulischer Brüche besteht aus drei Phasen: 1) Nukleation, 2) zeitabhängiges quasi-statisches Wachstum so lange der Fluiddruck die Zugfestigkeit des Gesteins übersteigt, und 3) in heterogenen Gesteinen der Einfluss von Lagen unterschiedlicher mechanischer oder sedimentärer Eigenschaften auf die Bruchausbreitung. Auch die mechanische Heterogenität, die durch präexistierende Brüche und Gesteinsdeformation erzeugt wird, hat großen Einfluß auf den Wachstumsverlauf. Die Richtung der Bruchausbreitung wird entweder durch die Verbindung von Diskontinuitäten mit geringer Zugfestigkeit im Bereich vor der Bruchfront bestimmt, oder die Bruchausbreitung kann enden, wenn der Bruch auf Diskontinuitäten mit hoher Festigkeit trifft. Durch diese Wechselwirkungen entsteht ein Kluftnetzwerk mit komplexer Geometrie, das die lokale Deformationsgeschichte und die Dynamik der unterliegenden physikalischen Prozesse reflektiert. rnrnNatürliche hydraulische Bruchbildung hat wesentliche Implikationen für akademische und kommerzielle Fragestellungen in verschiedenen Feldern der Geowissenschaften. Seit den 50er Jahren wird hydraulisches Fracturing eingesetzt, um die Permeabilität von Gas und Öllagerstätten zu erhöhen. Geländebeobachtungen, Isotopenstudien, Laborexperimente und numerische Analysen bestätigen die entscheidende Rolle des Fluiddruckgefälles in Verbindung mit poroelastischen Effekten für den lokalen Spannungszustand und für die Bedingungen, unter denen sich hydraulische Brüche bilden und ausbreiten. Die meisten numerischen hydromechanischen Modelle nehmen für die Kopplung zwischen Fluid und propagierenden Brüchen vordefinierte Bruchgeometrien mit konstantem Fluiddruck an, um das Problem rechnerisch eingrenzen zu können. Da natürliche Gesteine kaum so einfach strukturiert sind, sind diese Modelle generell nicht sonderlich effektiv in der Analyse dieses komplexen Prozesses. Insbesondere unterschätzen sie die Rückkopplung von poroelastischen Effekten und gekoppelte Fluid-Festgestein Prozesse, d.h. die Entwicklung des Porendrucks in Abhängigkeit vom Gesteinsversagen und umgekehrt.rnrnIn dieser Arbeit wird ein zweidimensionales gekoppeltes poro-elasto-plastisches Computer-Model für die qualitative und zum Teil auch quantitativ Analyse der Rolle lokalisierter oder homogen verteilter Fluiddrücke auf die dynamische Ausbreitung von hydraulischen Brüchen und die zeitgleiche Evolution der effektiven Permeabilität entwickelt. Das Programm ist rechnerisch effizient, indem es die Fluiddynamik mittels einer Druckdiffusions-Gleichung nach Darcy ohne redundante Komponenten beschreibt. Es berücksichtigt auch die Biot-Kompressibilität poröser Gesteine, die implementiert wurde um die Kontrollparameter in der Mechanik hydraulischer Bruchbildung in verschiedenen geologischen Szenarien mit homogenen und heterogenen Sedimentären Abfolgen zu bestimmen. Als Resultat ergibt sich, dass der Fluiddruck-Gradient in geschlossenen Systemen lokal zu Störungen des homogenen Spannungsfeldes führen. Abhängig von den Randbedingungen können sich diese Störungen eine Neuausrichtung der Bruchausbreitung zur Folge haben kann. Durch den Effekt auf den lokalen Spannungszustand können hohe Druckgradienten auch schichtparallele Bruchbildung oder Schlupf in nicht-entwässerten heterogenen Medien erzeugen. Ein Beispiel von besonderer Bedeutung ist die Evolution von Akkretionskeilen, wo die große Dynamik der tektonischen Aktivität zusammen mit extremen Porendrücken lokal starke Störungen des Spannungsfeldes erzeugt, die eine hoch-komplexe strukturelle Entwicklung inklusive vertikaler und horizontaler hydraulischer Bruch-Netzwerke bewirkt. Die Transport-Eigenschaften der Gesteine werden stark durch die Dynamik in der Entwicklung lokaler Permeabilitäten durch Dehnungsbrüche und Störungen bestimmt. Möglicherweise besteht ein enger Zusammenhang zwischen der Bildung von Grabenstrukturen und großmaßstäblicher Fluid-Migration. rnrnDie Konsistenz zwischen den Resultaten der Simulationen und vorhergehender experimenteller Untersuchungen deutet darauf hin, dass das beschriebene numerische Verfahren zur qualitativen Analyse hydraulischer Brüche gut geeignet ist. Das Schema hat auch Nachteile wenn es um die quantitative Analyse des Fluidflusses durch induzierte Bruchflächen in deformierten Gesteinen geht. Es empfiehlt sich zudem, das vorgestellte numerische Schema um die Kopplung mit thermo-chemischen Prozessen zu erweitern, um dynamische Probleme im Zusammenhang mit dem Wachstum von Kluftfüllungen in hydraulischen Brüchen zu untersuchen.
Resumo:
In this thesis I treat various biophysical questions arising in the context of complexed / ”protein-packed” DNA and DNA in confined geometries (like in viruses or toroidal DNA condensates). Using diverse theoretical methods I consider the statistical mechanics as well as the dynamics of DNA under these conditions. In the first part of the thesis (chapter 2) I derive for the first time the single molecule ”equation of state”, i.e. the force-extension relation of a looped DNA (Eq. 2.94) by using the path integral formalism. Generalizing these results I show that the presence of elastic substructures like loops or deflections caused by anchoring boundary conditions (e.g. at the AFM tip or the mica substrate) gives rise to a significant renormalization of the apparent persistence length as extracted from single molecule experiments (Eqs. 2.39 and 2.98). As I show the experimentally observed apparent persistence length reduction by a factor of 10 or more is naturally explained by this theory. In chapter 3 I theoretically consider the thermal motion of nucleosomes along a DNA template. After an extensive analysis of available experimental data and theoretical modelling of two possible mechanisms I conclude that the ”corkscrew-motion” mechanism most consistently explains this biologically important process. In chapter 4 I demonstrate that DNA-spools (architectures in which DNA circumferentially winds on a cylindrical surface, or onto itself) show a remarkable ”kinetic inertness” that protects them from tension-induced disruption on experimentally and biologically relevant timescales (cf. Fig. 4.1 and Eq. 4.18). I show that the underlying model establishes a connection between the seemingly unrelated and previously unexplained force peaks in single molecule nucleosome and DNA-toroid stretching experiments. Finally in chapter 5 I show that toroidally confined DNA (found in viruses, DNAcondensates or sperm chromatin) undergoes a transition to a twisted, highly entangled state provided that the aspect ratio of the underlying torus crosses a certain critical value (cf. Eq. 5.6 and the phase diagram in Fig. 5.4). The presented mechanism could rationalize several experimental mysteries, ranging from entangled and supercoiled toroids released from virus capsids to the unexpectedly short cholesteric pitch in the (toroidaly wound) sperm chromatin. I propose that the ”topological encapsulation” resulting from our model may have some practical implications for the gene-therapeutic DNA delivery process.
Resumo:
In this thesis, we investigated the evaporation of sessile microdroplets on different solid substrates. Three major aspects were studied: the influence of surface hydrophilicity and heterogeneity on the evaporation dynamics for an insoluble solid substrate, the influence of external process parameters and intrinsic material properties on microstructuring of soluble polymer substrates and the influence of an increased area to volume ratio in a microfluidic capillary, when evaporation is hindered. In the first part, the evaporation dynamics of pure sessile water drops on smooth self-assembled monolayers (SAMs) of thiols or disulfides on gold on mica was studied. With increasing surface hydrophilicity the drop stayed pinned longer. Thus, the total evaporation time of a given initial drop volume was shorter, since the drop surface, through which the evaporation occurs, stays longer large. Usually, for a single drop the volume decreased linearly with t1.5, t being the evaporation time, for a diffusion-controlled evaporation process. However, when we measured the total evaporation time, ttot, for multiple droplets with different initial volumes, V0, we found a scaling of the form V0 = attotb. The more hydrophilic the substrate was, the more showed the scaling exponent a tendency to an increased value up to 1.6. This can be attributed to an increasing evaporation rate through a thin water layer in the vicinity of the drop. Under the assumption of a constant temperature at the substrate surface a cooling of the droplet and thus a decreased evaporation rate could be excluded as a reason for the different scaling exponent by simulations performed by F. Schönfeld at the IMM, Mainz. In contrast, for a hairy surface, made of dialkyldisulfide SAMs with different chain lengths and a 1:1 mixture of hydrophilic and hydrophobic end groups (hydroxy versus methyl group), the scaling exponent was found to be ~ 1.4. It increased to ~ 1.5 with increasing hydrophilicity. A reason for this observation can only be speculated: in the case of longer hydrophobic alkyl chains the formation of an air layer between substrate and surface might be favorable. Thus, the heat transport to the substrate might be reduced, leading to a stronger cooling and thus decreased evaporation rate. In the second part, the microstructuring of polystyrene surfaces by drops of toluene, a good solvent, was investigated. For this a novel deposition technique was developed, with which the drop can be deposited with a syringe. The polymer substrate is lying on a motorized table, which picks up the pendant drop by an upward motion until a liquid bridge is formed. A consecutive downward motion of the table after a variable delay, i.e. the contact time between drop and polymer, leads to the deposition of the droplet, which can evaporate. The resulting microstructure is investigated in dependence of the processes parameters, i.e. the approach and the retraction speed of the substrate and the delay between them, and in dependence of the intrinsic material properties, i.e. the molar mass and the type of the polymer/solvent system. The principal equivalence with the microstructuring by the ink-jet technique was demonstrated. For a high approach and retraction speed of 9 mm/s and no delay between them, a concave microtopology was observed. In agreement with the literature, this can be explained by a flow of solvent and the dissolved polymer to the rim of the pinned droplet, where polymer is accumulated. This effect is analogue to the well-known formation of ring-like stains after the evaporation of coffee drops (coffee-stain effect). With decreasing retraction speed down to 10 µm/s the resulting surface topology changes from concave to convex. This can be explained with the increasing dissolution of polymer into the solvent drop prior to the evaporation. If the polymer concentration is high enough, gelation occurs instead of a flow to the rim and the shape of the convex droplet is received. With increasing delay time from below 0 ms to 1s the depth of the concave microwells decreases from 4.6 µm to 3.2 µm. However, a convex surface topology could not be obtained, since for longer delay times the polymer sticks to the tip of the syringe. Thus, by changing the delay time a fine-tuning of the concave structure is accomplished, while by changing the retraction speed a principal change of the microtopolgy can be achieved. We attribute this to an additional flow inside the liquid bridge, which enhanced polymer dissolution. Even if the pendant drop is evaporating about 30 µm above the polymer surface without any contact (non-contact mode), concave structures were observed. Rim heights as high as 33 µm could be generated for exposure times of 20 min. The concave structure exclusively lay above the flat polymer surface outside the structure even after drying. This shows that toluene is taken up permanently. The increasing rim height, rh, with increasing exposure time to the solvent vapor obeys a diffusion law of rh = rh0 tn, with n in the range of 0.46 ~ 0.65. This hints at a non-Fickian swelling process. A detailed analysis showed that the rim height of the concave structure is modulated, unlike for the drop deposition. This is due to the local stress relaxation, which was initiated by the increasing toluene concentration in the extruded polymer surface. By altering the intrinsic material parameters i.e. the polymer molar mass and the polymer/solvent combination, several types of microstructures could be formed. With increasing molar mass from 20.9 kDa to 1.44 MDa the resulting microstructure changed from convex, to a structure with a dimple in the center, to concave, to finally an irregular structure. This observation can be explained if one assumes that the microstructuring is dominated by two opposing effects, a decreasing solubility with increasing polymer molar mass, but an increasing surface tension gradient leading to instabilities of Marangoni-type. Thus, a polymer with a low molar mass close or below the entanglement limit is subject to a high dissolution rate, which leads to fast gelation compared to the evaporation rate. This way a coffee-rim like effect is eliminated early and a convex structure results. For high molar masses the low dissolution rate and the low polymer diffusion might lead to increased surface tension gradients and a typical local pile-up of polymer is found. For intermediate polymer masses around 200 kDa, the dissolution and evaporation rate are comparable and the typical concave microtopology is found. This interpretation was supported by a quantitative estimation of the diffusion coefficient and the evaporation rate. For a different polymer/solvent system, polyethylmethacrylate (PEMA)/ethylacetate (EA), exclusively concave structures were found. Following the statements above this can be interpreted with a lower dissolution rate. At low molar masses the concentration of PEMA in EA most likely never reaches the gelation point. Thus, a concave instead of a convex structure occurs. At the end of this section, the optically properties of such microstructures for a potential application as microlenses are studied with laser scanning confocal microscopy. In the third part, the droplet was confined into a glass microcapillary to avoid evaporation. Since here, due to an increased area to volume ratio, the surface properties of the liquid and the solid walls became important, the influence of the surface hydrophilicity of the wall on the interfacial tension between two immiscible liquid slugs was investigated. For this a novel method for measuring the interfacial tension between the two liquids within the capillary was developed. This technique was demonstrated by measuring the interfacial tensions between slugs of pure water and standard solvents. For toluene, n-hexane and chloroform 36.2, 50.9 and 34.2 mN/m were measured at 20°C, which is in a good agreement with data from the literature. For a slug of hexane in contact with a slug of pure water containing ethanol in a concentration range between 0 and 70 (v/v %), a difference of up to 6 mN/m was found, when compared to commercial ring tensiometry. This discrepancy is still under debate.
Resumo:
The interplay of hydrodynamic and electrostatic forces is of great importance for the understanding of colloidal dispersions. Theoretical descriptions are often based on the so called standard electrokinetic model. This Mean Field approach combines the Stokes equation for the hydrodynamic flow field, the Poisson equation for electrostatics and a continuity equation describing the evolution of the ion concentration fields. In the first part of this thesis a new lattice method is presented in order to efficiently solve the set of non-linear equations for a charge-stabilized colloidal dispersion in the presence of an external electric field. Within this framework, the research is mainly focused on the calculation of the electrophoretic mobility. Since this transport coefficient is independent of the electric field only for small driving, the algorithm is based upon a linearization of the governing equations. The zeroth order is the well known Poisson-Boltzmann theory and the first order is a coupled set of linear equations. Furthermore, this set of equations is divided into several subproblems. A specialized solver for each subproblem is developed, and various tests and applications are discussed for every particular method. Finally, all solvers are combined in an iterative procedure and applied to several interesting questions, for example, the effect of the screening mechanism on the electrophoretic mobility or the charge dependence of the field-induced dipole moment and ion clouds surrounding a weakly charged sphere. In the second part a quantitative data analysis method is developed for a new experimental approach, known as "Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy" (TIR-FCCS). The TIR-FCCS setup is an optical method using fluorescent colloidal particles to analyze the flow field close to a solid-fluid interface. The interpretation of the experimental results requires a theoretical model, which is usually the solution of a convection-diffusion equation. Since an analytic solution is not available due to the form of the flow field and the boundary conditions, an alternative numerical approach is presented. It is based on stochastic methods, i. e. a combination of a Brownian Dynamics algorithm and Monte Carlo techniques. Finally, experimental measurements for a hydrophilic surface are analyzed using this new numerical approach.
Resumo:
Wegen der fortschreitenden Miniaturisierung von Halbleiterbauteilen spielen Quanteneffekte eine immer wichtigere Rolle. Quantenphänomene werden gewöhnlich durch kinetische Gleichungen beschrieben, aber manchmal hat eine fluid-dynamische Beschreibung Vorteile: die bessere Nutzbarkeit für numerische Simulationen und die einfachere Vorgabe von Randbedingungen. In dieser Arbeit werden drei Diffusionsgleichungen zweiter und vierter Ordnung untersucht. Der erste Teil behandelt die implizite Zeitdiskretisierung und das Langzeitverhalten einer degenerierten Fokker-Planck-Gleichung. Der zweite Teil der Arbeit besteht aus der Untersuchung des viskosen Quantenhydrodynamischen Modells in einer Raumdimension und dessen Langzeitverhaltens. Im letzten Teil wird die Existenz von Lösungen einer parabolischen Gleichung vierter Ordnung in einer Raumdimension bewiesen, und deren Langzeitverhalten studiert.
Resumo:
My work concerns two different systems of equations used in the mathematical modeling of semiconductors and plasmas: the Euler-Poisson system and the quantum drift-diffusion system. The first is given by the Euler equations for the conservation of mass and momentum, with a Poisson equation for the electrostatic potential. The second one takes into account the physical effects due to the smallness of the devices (quantum effects). It is a simple extension of the classical drift-diffusion model which consists of two continuity equations for the charge densities, with a Poisson equation for the electrostatic potential. Using an asymptotic expansion method, we study (in the steady-state case for a potential flow) the limit to zero of the three physical parameters which arise in the Euler-Poisson system: the electron mass, the relaxation time and the Debye length. For each limit, we prove the existence and uniqueness of profiles to the asymptotic expansion and some error estimates. For a vanishing electron mass or a vanishing relaxation time, this method gives us a new approach in the convergence of the Euler-Poisson system to the incompressible Euler equations. For a vanishing Debye length (also called quasineutral limit), we obtain a new approach in the existence of solutions when boundary layers can appear (i.e. when no compatibility condition is assumed). Moreover, using an iterative method, and a finite volume scheme or a penalized mixed finite volume scheme, we numerically show the smallness condition on the electron mass needed in the existence of solutions to the system, condition which has already been shown in the literature. In the quantum drift-diffusion model for the transient bipolar case in one-space dimension, we show, by using a time discretization and energy estimates, the existence of solutions (for a general doping profile). We also prove rigorously the quasineutral limit (for a vanishing doping profile). Finally, using a new time discretization and an algorithmic construction of entropies, we prove some regularity properties for the solutions of the equation obtained in the quasineutral limit (for a vanishing pressure). This new regularity permits us to prove the positivity of solutions to this equation for at least times large enough.