2 resultados para Time dependent Ginzburg-Landau equations

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with the adsorption and detachment of polymers at planar, rigid surfaces. We have carried out a systematic investigation of adsorption of polymers using analytical techniques as well as Monte Carlo simulations with a coarse grained off-lattice bead spring model. The investigation was carried out in three stages. In the first stage the adsorption of a single multiblock AB copolymer on a solid surface was investigated by means of simulations and scaling analysis. It was shown that the problem could be mapped onto an effective homopolymer problem. Our main result was the phase diagram of regular multiblock copolymers which shows an increase in the critical adsorption potential of the substrate with decreasing size of blocks. We also considered the adsorption of random copolymers which was found to be well described within the annealed disorder approximation. In the next phase, we studied the adsorption kinetics of a single polymer on a flat, structureless surface in the regime of strong physisorption. The idea of a ’stem-flower’ polymer conformation and the mechanism of ’zipping’ during the adsorption process were used to derive a Fokker-Planck equation with reflecting boundary conditions for the time dependent probability distribution function (PDF) of the number of adsorbed monomers. The numerical solution of the time-dependent PDF obtained from a discrete set of coupled differential equations were shown to be in perfect agreement with Monte Carlo simulation results. Finally we studied force induced desorption of a polymer chain adsorbed on an attractive surface. We approached the problem within the framework of two different statistical ensembles; (i) by keeping the pulling force fixed while measuring the position of the polymer chain end, and (ii) by measuring the force necessary to keep the chain end at fixed distance above the adsorbing plane. In the first case we treated the problem within the framework of the Grand Canonical Ensemble approach and derived analytic expressions for the various conformational building blocks, characterizing the structure of an adsorbed linear polymer chain, subject to pulling force of fixed strength. The main result was the phase diagram of a polymer chain under pulling. We demonstrated a novel first order phase transformation which is dichotomic i.e. phase coexistence is not possible. In the second case, we carried out our study in the “fixed height” statistical ensemble where one measures the fluctuating force, exerted by the chain on the last monomer when a chain end is kept fixed at height h over the solid plane at different adsorption strength ε. The phase diagram in the h − ε plane was calculated both analytically and by Monte Carlo simulations. We demonstrated that in the vicinity of the polymer desorption transition a number of properties like fluctuations and probability distribution of various quantities behave differently, if h rather than the force, f, is used as an independent control parameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zeitreihen sind allgegenwärtig. Die Erfassung und Verarbeitung kontinuierlich gemessener Daten ist in allen Bereichen der Naturwissenschaften, Medizin und Finanzwelt vertreten. Das enorme Anwachsen aufgezeichneter Datenmengen, sei es durch automatisierte Monitoring-Systeme oder integrierte Sensoren, bedarf außerordentlich schneller Algorithmen in Theorie und Praxis. Infolgedessen beschäftigt sich diese Arbeit mit der effizienten Berechnung von Teilsequenzalignments. Komplexe Algorithmen wie z.B. Anomaliedetektion, Motivfabfrage oder die unüberwachte Extraktion von prototypischen Bausteinen in Zeitreihen machen exzessiven Gebrauch von diesen Alignments. Darin begründet sich der Bedarf nach schnellen Implementierungen. Diese Arbeit untergliedert sich in drei Ansätze, die sich dieser Herausforderung widmen. Das umfasst vier Alignierungsalgorithmen und ihre Parallelisierung auf CUDA-fähiger Hardware, einen Algorithmus zur Segmentierung von Datenströmen und eine einheitliche Behandlung von Liegruppen-wertigen Zeitreihen.rnrnDer erste Beitrag ist eine vollständige CUDA-Portierung der UCR-Suite, die weltführende Implementierung von Teilsequenzalignierung. Das umfasst ein neues Berechnungsschema zur Ermittlung lokaler Alignierungsgüten unter Verwendung z-normierten euklidischen Abstands, welches auf jeder parallelen Hardware mit Unterstützung für schnelle Fouriertransformation einsetzbar ist. Des Weiteren geben wir eine SIMT-verträgliche Umsetzung der Lower-Bound-Kaskade der UCR-Suite zur effizienten Berechnung lokaler Alignierungsgüten unter Dynamic Time Warping an. Beide CUDA-Implementierungen ermöglichen eine um ein bis zwei Größenordnungen schnellere Berechnung als etablierte Methoden.rnrnAls zweites untersuchen wir zwei Linearzeit-Approximierungen für das elastische Alignment von Teilsequenzen. Auf der einen Seite behandeln wir ein SIMT-verträgliches Relaxierungschema für Greedy DTW und seine effiziente CUDA-Parallelisierung. Auf der anderen Seite führen wir ein neues lokales Abstandsmaß ein, den Gliding Elastic Match (GEM), welches mit der gleichen asymptotischen Zeitkomplexität wie Greedy DTW berechnet werden kann, jedoch eine vollständige Relaxierung der Penalty-Matrix bietet. Weitere Verbesserungen umfassen Invarianz gegen Trends auf der Messachse und uniforme Skalierung auf der Zeitachse. Des Weiteren wird eine Erweiterung von GEM zur Multi-Shape-Segmentierung diskutiert und auf Bewegungsdaten evaluiert. Beide CUDA-Parallelisierung verzeichnen Laufzeitverbesserungen um bis zu zwei Größenordnungen.rnrnDie Behandlung von Zeitreihen beschränkt sich in der Literatur in der Regel auf reellwertige Messdaten. Der dritte Beitrag umfasst eine einheitliche Methode zur Behandlung von Liegruppen-wertigen Zeitreihen. Darauf aufbauend werden Distanzmaße auf der Rotationsgruppe SO(3) und auf der euklidischen Gruppe SE(3) behandelt. Des Weiteren werden speichereffiziente Darstellungen und gruppenkompatible Erweiterungen elastischer Maße diskutiert.