4 resultados para Stochastic exponential stabilities

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this thesis is to further the understanding of the structural, electronic and magnetic properties of ternary inter-metallic compounds using density functional theory (DFT). Four main problems are addressed. First, a detailed analysis on the ternary Heusler compounds is made. It has long been known that many Heusler compounds ($X_2YZ$; $X$ and $Y$ transition elements, $Z$ main group element) exhibit interesting half-metallic and ferromagnetic properties. In order to understand these, the dependence of magnetic and electronic properties on the structural parameters, the type of exchange-correlation functional and electron-electron correlation was examined. It was found that almost all Co$_2YZ$ Heusler compounds exhibit half-metallic ferromagnetism. It is also observed that $X$ and $Y$ atoms mainly contribute to the total magnetic moment. The magnitude of the total magnetic moment is determined only indirectly by the nature of $Z$ atoms, and shows a trend consistent with Slater-Pauling behaviour in several classes of these compounds. In contrast to experiments, calculations give a non-integer value of the magnetic moment in certain Co$_2$-based Heusler compounds. To explain deviations of the calculated magnetic moment, the LDA+$U$ scheme was applied and it was found that the inclusion of electron-electron correlation beyond the LSDA and GGA is necessary to obtain theoretical description of some Heusler compounds that are half-metallic ferromagnets. The electronic structure and magnetic properties of substitutional series of the quaternary Heusler compound Co$_2$Mn$_{1-x}$Fe$_x$Si were investigated under LDA+$U$. The calculated band structure suggest that the most stable compound in a half-metallic state will occur at an intermediate Fe concentration. These calculated findings are qualitatively confirmed by experimental studies. Second, the effect of antisite disordering in the Co$_2$TiSn system was investigated theoretically as well as experimentally. Preservation of half-metallicity for Co$_2$TiSn was observed with moderate antisite disordering and experimental findings suggest that the Co and Ti antisites disorder amounts to approximately 10~% in the compound. Third, a systematic examination was carried out for band gaps and the nature (covalent or ionic) of bonding in semiconducting 8- and 18-electron or half-metallic ferromagnet half-Heusler compounds. It was found that the most appropriate description of these compounds from the viewpoint of electronic structures is one of a $YZ$ zinc blende lattice stuffed by the $X$ ion. Simple valence rules are obeyed for bonding in the 8- and 18-electron compounds. Fourth, hexagonal analogues of half-Heusler compounds have been searched. Three series of compounds were investigated: GdPdSb, GdAutextit{X} (textit{X} = Mn, Cd and In) and EuNiP. GdPdSb is suggested as a possible half-metallic weak ferromagnet at low temperature. GdAutextit{X} (textit{X} = Mn, Cd and In) and EuNiP were investigated because they exhibit interesting bonding, structural and magnetic properties. The results qualitatively confirm experimental studies on magnetic and structural behaviour in GdPdSb, GdAutextit{X} (textit{X} = Mn, Cd and In) and EuNiP compounds. ~

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A field of computational neuroscience develops mathematical models to describe neuronal systems. The aim is to better understand the nervous system. Historically, the integrate-and-fire model, developed by Lapique in 1907, was the first model describing a neuron. In 1952 Hodgkin and Huxley [8] described the so called Hodgkin-Huxley model in the article “A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation in Nerve”. The Hodgkin-Huxley model is one of the most successful and widely-used biological neuron models. Based on experimental data from the squid giant axon, Hodgkin and Huxley developed their mathematical model as a four-dimensional system of first-order ordinary differential equations. One of these equations characterizes the membrane potential as a process in time, whereas the other three equations depict the opening and closing state of sodium and potassium ion channels. The membrane potential is proportional to the sum of ionic current flowing across the membrane and an externally applied current. For various types of external input the membrane potential behaves differently. This thesis considers the following three types of input: (i) Rinzel and Miller [15] calculated an interval of amplitudes for a constant applied current, where the membrane potential is repetitively spiking; (ii) Aihara, Matsumoto and Ikegaya [1] said that dependent on the amplitude and the frequency of a periodic applied current the membrane potential responds periodically; (iii) Izhikevich [12] stated that brief pulses of positive and negative current with different amplitudes and frequencies can lead to a periodic response of the membrane potential. In chapter 1 the Hodgkin-Huxley model is introduced according to Izhikevich [12]. Besides the definition of the model, several biological and physiological notes are made, and further concepts are described by examples. Moreover, the numerical methods to solve the equations of the Hodgkin-Huxley model are presented which were used for the computer simulations in chapter 2 and chapter 3. In chapter 2 the statements for the three different inputs (i), (ii) and (iii) will be verified, and periodic behavior for the inputs (ii) and (iii) will be investigated. In chapter 3 the inputs are embedded in an Ornstein-Uhlenbeck process to see the influence of noise on the results of chapter 2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider stochastic individual-based models for social behaviour of groups of animals. In these models the trajectory of each animal is given by a stochastic differential equation with interaction. The social interaction is contained in the drift term of the SDE. We consider a global aggregation force and a short-range repulsion force. The repulsion range and strength gets rescaled with the number of animals N. We show that for N tending to infinity stochastic fluctuations disappear and a smoothed version of the empirical process converges uniformly towards the solution of a nonlinear, nonlocal partial differential equation of advection-reaction-diffusion type. The rescaling of the repulsion in the individual-based model implies that the corresponding term in the limit equation is local while the aggregation term is non-local. Moreover, we discuss the effect of a predator on the system and derive an analogous convergence result. The predator acts as an repulsive force. Different laws of motion for the predator are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation consists of three self-contained papers that are related to two main topics. In particular, the first and third studies focus on labor market modeling, whereas the second essay presents a dynamic international trade setup.rnrnIn Chapter "Expenses on Labor Market Reforms during Transitional Dynamics", we investigate the arising costs of a potential labor market reform from a government point of view. To analyze various effects of unemployment benefits system changes, this chapter develops a dynamic model with heterogeneous employed and unemployed workers.rn rnIn Chapter "Endogenous Markup Distributions", we study how markup distributions adjust when a closed economy opens up. In order to perform this analysis, we first present a closed-economy general-equilibrium industry dynamics model, where firms enter and exit markets, and then extend our analysis to the open-economy case.rn rnIn Chapter "Unemployment in the OECD - Pure Chance or Institutions?", we examine effects of aggregate shocks on the distribution of the unemployment rates in OECD member countries.rn rnIn all three chapters we model systems that behave randomly and operate on stochastic processes. We therefore exploit stochastic calculus that establishes clear methodological links between the chapters.