13 resultados para Spherical elastic shells
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
We investigate a chain consisting of two coupled worm-like chains withconstant distance between the strands. The effects due todouble-strandedness of the chain are studied. In a previous analyticalstudy of this system an intrinsic twist-stretch coupling and atendency of kinking is predicted. Even though a local twist structureis observed the predicted features are not recovered. A new model for DNA at the base-pair level is presented. Thebase-pairs are treated as flat rigid ellipsoids and thesugar-phosphate backbones are represented as stiff harmonic springs.The base-pair stacking interaction is modeled by a variant of theGay-Berne potential. It is shown by systematic coarse-graininghow the elastic constants of a worm-like chain are related to thelocal fluctuations of the base-pair step parameters. Even though a lotof microscopic details of the base-pair geometry is neglected themodel can be optimized to obtain a B-DNA conformation as ground stateand reasonable elastic properties. Moreover the model allows tosimulate much larger length scales than it is possible with atomisticsimulations due to the simplification of the force-field and inparticular due to the possibility of non-local Monte-Carlo moves. Asa first application the behavior under stretching is investigated. Inagreement with micromanipulation experiments on single DNA moleculesone observes a force-plateau in the force-extension curvescorresponding to an overstretching transition from B-DNA to aso-called S-DNA state. The model suggests a structure for S-DNA withhighly inclined base-pairs in order to enable at least partialbase-pair stacking. Finally a simple model for chromatin is introduced to study itsstructural and elastic properties. The underlying geometry of themodeled fiber is based on a crossed-linker model. The chromatosomesare treated as disk-like objects. Excluded volume and short rangenucleosomal interaction are taken into account by a variant of theGay-Berne potential. It is found that the bending rigidity and thestretching modulus of the fiber increase with more compact fibers. Fora reasonable parameterization of the fiber for physiologicalconditions and sufficiently high attraction between the nucleosomes aforce-extension curve is found similar to stretching experiments onsingle chromatin fibers. For very small stretching forces a kinkedfiber forming a loop is observed. If larger forces are applied theloop formation is stretched out and a decondensation of the fibertakes place.
Resumo:
Core-shell macromolecules with dendritic polyphenylene core and polymer shell Zusammenfassung / Abstract Core-shell macromolecular structures have become of great interest in materials science because they gave an opportunity to combine a large variety of chemical and physical properties in the single molecule, by combination of different (in terms of chemistry and physics) cores and shells. The interest in such complex structures was provoked by their potential applications in the coating and painting industry (latexes), as supports for catalysts in polymer industry, or as nano-containers and transporters for genes or drug delivery. The aim of this study was the synthesis, characterization and further application of core-shell macromolecules possessing a hydrophobic stiff core (polyphenylene dendrimers) surrounded with a hydrophilic, soft, covalently bonded polymer shell (poly(ethylene oxide) and its copolymers). The requirements for such complex substances were that they should be well-defined in terms of molecular weight (narrow molecular weight distribution) and in molecular structure. The preparation of core-shell molecules containing dendrimer as a core was possible via two synthetic routs: “grafting-onto” and “grafting-from”. The resulting core-shell macromolecules possessed narrow polydispersity as guaranteed by the excellent structural and functional definition of the dendrimer and the narrow polydispersity of the PEO, PS-b-PEO and PI-b-PEO attached to the dendrimer surface. Additional investigation of the size of the particles indicated a relation between both the length and the number of the polymer chains and the hydrodynamic radius determined by Dynamic Light Scattering and Fluorescent Correlation Spectroscopy. Core-shell nano-particles were applied as metallocene supports in heterogeneous olefin polymerizations. Our results indicate that such catalyst systems, that have a size of at least one order of magnitude smaller than the used by now organic supports, could be very useful as model compounds for investigations on catalyst fragmentation and its influence on the product parameters.
Resumo:
n this work, three Cypraea species (C. talpa, C. tigris and C. zebra) were exhaustively studied. The shells have been separated in the structural layers. The mineralogy, ultra- and micro-structure of each layer were analyzed by Confocal Laser Scanning Microscopy (CLSM), Scanning Electron Microscopy (SEM), X-Ray Diffractometry (XRD) and Raman Spectroscopy (RS). The presence of biologically relevant trace metals (Mn, Co, Fe, Zn, Cr, etc.) has been investigated using Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) as detection tool. A new method has been developed and optimized to extract and analyze the soluble organic matrix (SOM) of the shell. Although the molecular nature of the SOM is not really known, it contains at least large protein fraction, if not only consists of proteins. The extracted matrices were compared between layers and species using Size Exclusion High Performance Liquid Chromatography coupled with Ultra Violet Spectrometry (SE-HPLC-UV), Gel electrophoresis (GE) and protein quantification tests. For the first time to our knowledge the association of trace elements to the protein in the SOM of the shell was studied using hyphenated on line as well as combined off line techniques and validated through inter-comparison tests between the different methods applied. Interesting correlations between the trace element concentration, the microstructure and the protein content were directly and indirectly detected. The metals Cu, Ni, Co and Zn have shown to bind to the SOM extracted from C. talpa, C. tigris and C. zebra shells. Within the conclusions of this work it was demonstrated that these protein-metal-complexes (or metal containing proteins) change from one layer to the other and are different between the three snails analyzed. In addition, the complexes are clearly related only to certain protein fractions of the SOM, and not to the whole SOM observed. These fractions and show not to be very metal-specific (i.e. some of these fractions bind two or three different metals).
Resumo:
This dissertation is devoted to the experimental exploration of the propagation of elastic waves in soft mesoscopic structures with submicrometer dimensions. A strong motivation of this work is the large technological relevance and the fundamental importance of the subject. Elastic waves are accompanied by time-dependent fluctuations of local stress and strain fields in the medium. As such, the propagation phase velocities are intimately related to the elastic moduli. Knowledge of the elastic wave propagation directly provides information about the mechanical properties of the probed mesoscopic structures, which are not readily accessible experimentally. On the other hand, elastic waves, when propagating in an inhomogeneous medium with spatial inhomogeneities comparable to their wavelength, exhibit rather rich behavior, including the appearance of novel physical phenomena, such as phononic bandgap formation. So far, the experimental work has been restricted to macroscopic structures, which limit wave propagation below the KHz range. It was anticipated that an experimental approach capable of probing the interplay of the wave propagation with the controlled mesoscopic structures would contribute to deeper insights into the fundamental problem of elastic wave propagation in inhomogeneous systems. The mesoscopic nature of the structures to be studied precludes the use of traditional methods, such as sound transmission, for the study of elastic wave propagation. In this work, an optical method utilizing the inelastic scattering of photons by GHz frequency thermally excited elastic waves, known as Brillouin light scattering spectroscopy (BLS), was employed. Two important classes of soft structures were investigated: thin films and colloidal crystals. For the former, the main interest was the effect of the one-dimensional (1D) confinement on the wave propagation due to the presence of the free-surface or interface of the layer and the utilization of these waves to extract relevant material parameters. For the second system, the primary interest was the interaction of the elastic wave and the strong scattering medium with local resonance units in a three-dimensional (3D) periodic arrangement.
Resumo:
The proton-nucleus elastic scattering at intermediate energies is a well-established method for the investigation of the nuclear matter distribution in stable nuclei and was recently applied also for the investigation of radioactive nuclei using the method of inverse kinematics. In the current experiment, the differential cross sections for proton elastic scattering on the isotopes $^{7,9,10,11,12,14}$Be and $^8$B were measured. The experiment was performed using the fragment separator at GSI, Darmstadt to produce the radioactive beams. The main part of the experimental setup was the time projection ionization chamber IKAR which was simultaneously used as hydrogen target and a detector for the recoil protons. Auxiliary detectors for projectile tracking and isotope identification were also installed. As results from the experiment, the absolute differential cross sections d$sigma$/d$t$ as a function of the four momentum transfer $t$ were obtained. In this work the differential cross sections for elastic p-$^{12}$Be, p-$^{14}$Be and p-$^{8}$B scattering at low $t$ ($t leq$~0.05~(GeV/c)$^2$) are presented. The measured cross sections were analyzed within the Glauber multiple-scattering theory using different density parameterizations, and the nuclear matter density distributions and radii of the investigated isotopes were determined. The analysis of the differential cross section for the isotope $^{14}$Be shows that a good description of the experimental data is obtained when density distributions consisting of separate core and halo components are used. The determined {it rms} matter radius is $3.11 pm 0.04 pm 0.13$~fm. In the case of the $^{12}$Be nucleus the results showed an extended matter distribution as well. For this nucleus a matter radius of $2.82 pm 0.03 pm 0.12$~fm was determined. An interesting result is that the free $^{12}$Be nucleus behaves differently from the core of $^{14}$Be and is much more extended than it. The data were also compared with theoretical densities calculated within the FMD and the few-body models. In the case of $^{14}$Be, the calculated cross sections describe the experimental data well while, in the case of $^{12}$Be there are discrepancies in the region of high momentum transfer. Preliminary experimental results for the isotope $^8$B are also presented. An extended matter distribution was obtained (though much more compact as compared to the neutron halos). A proton halo structure was observed for the first time with the proton elastic scattering method. The deduced matter radius is $2.60pm 0.02pm 0.26$~fm. The data were compared with microscopic calculations in the frame of the FMD model and reasonable agreement was observed. The results obtained in the present analysis are in most cases consistent with the previous experimental studies of the same isotopes with different experimental methods (total interaction and reaction cross section measurements, momentum distribution measurements). For future investigation of the structure of exotic nuclei a universal detector system EXL is being developed. It will be installed at the NESR at the future FAIR facility where higher intensity beams of radioactive ions are expected. The usage of storage ring techniques provides high luminosity and low background experimental conditions. Results from the feasibility studies of the EXL detector setup, performed at the present ESR storage ring, are presented.
Resumo:
When a liquid crystal is confined to a cavity its director field becomes subject to competing forces: on the one hand, the surface of the cavity orients the director field (``surface anchoring''), on the other hand deformations of the director field cost elastic energy. Hence the equilibrium director field is determined by a compromise between surface anchoring and elasticity. One example of a confined liquid crystal that has attracted particular interest from physicists is the nematic droplet. In this thesis a system of hard rods is considered as the simplest model for nematic liquid crystals consisting of elongated molecules. First, systems of hard spherocylinders in a spherical geometry are investigated by means of canonical Monte Carlo simulations. In contrast to previous simulation work on this problem, a continuum model is used. In particular, the effects of ordering near hard curved walls are studied for the low-density regime. With increasing density, first a uniaxial surface film forms and then a biaxial surface film, which eventually fills the entire cavity. We study how the surface order, the adsorption and the shape of the director field depend on the curvature of the wall. We find that orientational ordering at a curved wall in a cavity is stronger than at a flat wall, while adsorption is weaker. For densities above the isotropic-nematic transition, we always find bipolar configurations. As a next step, an extension of the Asakura-Oosawa-Vrij model for colloid-polymer mixtures to anisotropic colloids is considered. By means of computer simulations we study how droplets of hard, rod-like particles optimize their shape and structure under the influence of the osmotic compression caused by the presence of spherical particles that act as depletion agents. At sufficiently high osmotic pressures the rods that make up the drops spontaneously align to turn them into uniaxial nematic liquid crystalline droplets. The nematic droplets or ``tactoids'' that so form are not spherical but elongated, resulting from the competition between the anisotropic surface tension and the elastic deformation of the director field. In agreement with recent theoretical predictions we find that sufficiently small tactoids have a uniform director field, whilst large ones are characterized by a bipolar director field. From the shape and director-field transformation of the droplets we estimate the surface anchoring strength.
Resumo:
Materials that can mold the flow of elastic waves of certain energy in certain directions are called phononic materials. The present thesis deals essentially with such phononic systems, which are structured in the mesoscale (<1 µm), and with their individual components. Such systems show interesting phononic properties in the hypersonic region, i.e., at frequencies in the GHz range. It is shown that colloidal systems are excellent model systems for the realization of such phononic materials. Therefore, different structures and particle architectures are investigated by Brillouin light scattering, the inelastic scattering of light by phonons.rnThe experimental part of this work is divided into three chapters: Chapter 4 is concerned with the localized mechanical waves in the individual spherical colloidal particles, i.e., with their resonance- or eigenvibrations. The investigation of these vibrations with regard to the environment of the particles, their chemical composition, and the influence of temperature on nanoscopically structured colloids allows novel insights into the physical properties of colloids at small length scales. Furthermore, some general questions concerning light scattering on such systems, in dispute so far, are convincingly addressed.rnChapter 5 is a study of the traveling of mechanical waves in colloidal systems, consisting of ordered and disordered colloids in liquid or elastic matrix. Such systems show acoustic band gaps, which can be explained geometrically (Bragg gap) or by the interaction of the acoustic band with the eigenvibrations of the individual spheres (hybridization gap).rnWhile the latter has no analogue in photonics, the presence of strong phonon scatterers, when a large elastic mismatch between the composite components exists, can largely impact phonon propagation in analogy to strong multiple light scattering systems. The former is exemplified in silica based phononic structures that opens the door to new ways of sound propagation manipulation.rnChapter 6 describes the first measurement of the elastic moduli in newly fabricated by physical vapor deposition so-called ‘stable organic glasses’. rnIn brief, this thesis explores novel phenomena in colloid-based hypersonic phononic structures, utilizing a versatile microfabrication technique along with different colloid architectures provided by material science, and applying a non-destructive optical experimental tool to record dispersion diagrams.rn
Resumo:
As the elastic response of cell membranes to mechanical stimuli plays a key role in various cellular processes, novel biophysical strategies to quantify the elasticity of native membranes under physiological conditions at a nanometer scale are gaining interest. In order to investigate the elastic response of apical membranes, elasticity maps of native membrane sheets, isolated from MDCK II (Madine Darby Canine kidney strain II) epithelial cells, were recorded by local indentation with an Atomic Force Microscope (AFM). To exclude the underlying substrate effect on membrane indentation, a highly ordered gold coated porous array with a pore diameter of 1.2 μm was used to support apical membranes. Overlays of fluorescence and AFM images show that intact apical membrane sheets are attached to poly-D-lysine coated porous substrate. Force indentation measurements reveal an extremely soft elastic membrane response if it is indented at the center of the pore in comparison to a hard repulsion on the adjacent rim used to define the exact contact point. A linear dependency of force versus indentation (-dF/dh) up to 100 nm penetration depth enabled us to define an apparent membrane spring constant (kapp) as the slope of a linear fit with a stiffness value of for native apical membrane in PBS. A correlation between fluorescence intensity and kapp is also reported. Time dependent hysteresis observed with native membranes is explained by a viscoelastic solid model of a spring connected to a Kelvin-Voight solid with a time constant of 0.04 s. No hysteresis was reported with chemically fixated membranes. A combined linear and non linear elastic response is suggested to relate the experimental data of force indentation curves to the elastic modulus and the membrane thickness. Membrane bending is the dominant contributor to linear elastic indentation at low loads, whereas stretching is the dominant contributor for non linear elastic response at higher loads. The membrane elastic response was controlled either by stiffening with chemical fixatives or by softening with F-actin disrupters. Overall, the presented setup is ideally suitable to study the interactions of the apical membrane with the underlying cytoskeleton by means of force indentation elasticity maps combined with fluorescence imaging.
Resumo:
The electromagnetic form factors of the proton are fundamental quantities sensitive to the distribution of charge and magnetization inside the proton. Precise knowledge of the form factors, in particular of the charge and magnetization radii provide strong tests for theory in the non-perturbative regime of QCD. However, the existing data at Q^2 below 1 (GeV/c)^2 are not precise enough for a hard test of theoretical predictions.rnrnFor a more precise determination of the form factors, within this work more than 1400 cross sections of the reaction H(e,e′)p were measured at the Mainz Microtron MAMI using the 3-spectrometer-facility of the A1-collaboration. The data were taken in three periods in the years 2006 and 2007 using beam energies of 180, 315, 450, 585, 720 and 855 MeV. They cover the Q^2 region from 0.004 to 1 (GeV/c)^2 with counting rate uncertainties below 0.2% for most of the data points. The relative luminosity of the measurements was determined using one of the spectrometers as a luminosity monitor. The overlapping acceptances of the measurements maximize the internal redundancy of the data and allow, together with several additions to the standard experimental setup, for tight control of systematic uncertainties.rnTo account for the radiative processes, an event generator was developed and implemented in the simulation package of the analysis software which works without peaking approximation by explicitly calculating the Bethe-Heitler and Born Feynman diagrams for each event.rnTo separate the form factors and to determine the radii, the data were analyzed by fitting a wide selection of form factor models directly to the measured cross sections. These fits also determined the absolute normalization of the different data subsets. The validity of this method was tested with extensive simulations. The results were compared to an extraction via the standard Rosenbluth technique.rnrnThe dip structure in G_E that was seen in the analysis of the previous world data shows up in a modified form. When compared to the standard-dipole form factor as a smooth curve, the extracted G_E exhibits a strong change of the slope around 0.1 (GeV/c)^2, and in the magnetic form factor a dip around 0.2 (GeV/c)^2 is found. This may be taken as indications for a pion cloud. For higher Q^2, the fits yield larger values for G_M than previous measurements, in agreement with form factor ratios from recent precise polarized measurements in the Q2 region up to 0.6 (GeV/c)^2.rnrnThe charge and magnetic rms radii are determined as rn⟨r_e⟩=0.879 ± 0.005(stat.) ± 0.004(syst.) ± 0.002(model) ± 0.004(group) fm,rn⟨r_m⟩=0.777 ± 0.013(stat.) ± 0.009(syst.) ± 0.005(model) ± 0.002(group) fm.rnThis charge radius is significantly larger than theoretical predictions and than the radius of the standard dipole. However, it is in agreement with earlier results measured at the Mainz linear accelerator and with determinations from Hydrogen Lamb shift measurements. The extracted magnetic radius is smaller than previous determinations and than the standard-dipole value.
Resumo:
Bivalve mollusk shells are useful tools for multi-species and multi-proxy paleoenvironmental reconstructions with a high temporal and spatial resolution. Past environmental conditions can be reconstructed from shell growth and stable oxygen and carbon isotope ratios, which present an archive for temperature, freshwater fluxes and primary productivity. The purpose of this thesis is the reconstruction of Holocene climate and environmental variations in the North Pacific with a high spatial and temporal resolution using marine bivalve shells. This thesis focuses on several different Holocene time periods and multiple regions in the North Pacific, including: Japan, Alaska (AK), British Columbia (BC) and Washington State, which are affected by the monsoon, Pacific Decadal Oscillation (PDO) and El Niño/Southern Oscillation (ENSO). Such high-resolution proxy data from the marine realm of mid- and high-latitudes are still rare. Therefore, this study contributes to the optimization and verification of climate models. However, before using bivalves for environmental reconstructions and seasonality studies, life history traits must be well studied to temporally align and interpret the geochemical record. These calibration studies are essential to ascertain the usefulness of selected bivalve species as paleoclimate proxy archives. This work focuses on two bivalve species, the short-lived Saxidomus gigantea and the long-lived Panopea abrupta. Sclerochronology and oxygen isotope ratios of different shell layers of P. abrupta were studied in order to test the reliability of this species as a climate archive. The annual increments are clearly discernable in umbonal shell portions and the increments widths should be measured in these shell portions. A reliable reconstruction of paleotemperatures may only be achieved by exclusively sampling the outer shell layer of multiple contemporaneous specimens. Life history traits (e.g., timing of growth line formation, duration of the growing season and growth rates) and stable isotope ratios of recent S. gigantea from AK and BC were analyzed in detail. Furthermore, a growth-temperature model based on S. gigantea shells from Alaska was established, which provides a better understanding of the hydrological changes related to the Alaska Coastal Current (ACC). This approach allows the independent measurement of water temperature and salinity from variations in the width of lunar daily growth increments of S. gigantea. Temperature explains 70% of the variability in shell growth. The model was calibrated and tested with modern shells and then applied to archaeological specimens. The time period between 988 and 1447 cal yrs BP was characterized by colder (~1-2°C) and much drier (2-5 PSU) summers, and a likely much slower flowing ACC than at present. In contrast, the summers during the time interval of 599-1014 cal yrs BP were colder (up to 3°C) and fresher (1-2 PSU) than today. The Aleutian Low may have been stronger and the ACC was probably flowing faster during this time.
Resumo:
Die Kapillarkraft entsteht durch die Bildung eines Meniskus zwischen zwei Festkörpen. In dieser Doktorarbeit wurden die Auswirkungen von elastischer Verformung und Flϋssigkeitadsorption auf die Kapillarkraft sowohl theoretisch als auch experimentell untersucht. Unter Verwendung eines Rasterkraftmikroskops wurde die Kapillarkraft zwischen eines Siliziumoxid Kolloids von 2 µm Radius und eine weiche Oberfläche wie n.a. Polydimethylsiloxan oder Polyisopren, unter normalen Umgebungsbedingungen sowie in variierende Ethanoldampfdrϋcken gemessen. Diese Ergebnisse wurden mit den Kapillarkräften verglichen, die auf einem harten Substrat (Silizium-Wafer) unter denselben Bedingungen gemessen wurden. Wir beobachteten eine monotone Abnahme der Kapillarkraft mit zunehmendem Ethanoldampfdruck (P) fϋr P/Psat > 0,2, wobei Psat der Sättigungsdampfdruck ist.rnUm die experimentellen Ergebnisse zu erklären, wurde ein zuvor entwickeltes analytisches Modell (Soft Matter 2010, 6, 3930) erweitert, um die Ethanoladsorption zu berϋcksichtigen. Dieses neue analytische Modell zeigte zwei verschiedene Abhängigkeiten der Kapillarkraft von P/Psat auf harten und weichen Oberflächen. Fϋr die harte Oberfläche des Siliziumwafers wird die Abhängigkeit der Kapillarkraft vom Dampfdruck vom Verhältnis der Dicke der adsorbierten Ethanolschicht zum Meniskusradius bestimmt. Auf weichen Polymeroberflächen hingegen hängt die Kapillarkraft von der Oberflächenverformung und des Laplace-Drucks innerhalb des Meniskus ab. Eine Abnahme der Kapillarkraft mit zunehmendem Ethanoldampfdruck hat demnach eine Abnahme des Laplace-Drucks mit zunehmendem Meniskusradius zur folge. rnDie analytischen Berechnungen, fϋr die eine Hertzsche Kontakt-deformation angenommen wurde, wurden mit Finit Element Methode Simulationen verglichen, welche die reale Deformation des elastischen Substrats in der Nähe des Meniskuses explizit berϋcksichtigen. Diese zusätzliche nach oben gerichtete oberflächenverformung im Bereich des Meniskus fϋhrt zu einer weiteren Erhöhung der Kapillarkraft, insbesondere fϋr weiche Oberflächen mit Elastizitätsmodulen < 100 MPa.rn
Resumo:
Phononic crystals, capable to block or direct the propagation of elastic/acoustic waves, have attracted increasing interdisciplinary interest across condensed matter physics and materials science. As of today, no generalized full description of elastic wave propagation in phononic structures is available, mainly due to the large number of variables determining the band diagram. Therefore, this thesis aims for a deeper understanding of the fundamental concepts governing wave propagation in mesoscopic structures by investigation of appropriate model systems. The phononic dispersion relation at hypersonic frequencies is directly investigated by the non-destructive technique of high-resolution spontaneous Brillouin light scattering (BLS) combined with computational methods. Due to the vector nature of the elastic wave propagation, we first studied the hypersonic band structure of hybrid superlattices. These 1D phononic crystals composed of alternating layers of hard and soft materials feature large Bragg gaps. BLS spectra are sensitive probes of the moduli, photo-elastic constants and structural parameters of the constituent components. Engineering of the band structure can be realized by introduction of defects. Here, cavity layers are employed to launch additional modes that modify the dispersion of the undisturbed superlattice, with extraordinary implications to the band gap region. Density of states calculations in conjunction with the associated deformation allow for unambiguous identication of surface and cavity modes, as well as their interaction with adjacent defects. Next, the role of local resonances in phononic systems is explored in 3D structures based on colloidal particles. In turbid media BLS records the particle vibration spectrum comprising resonant modes due to the spatial confinement of elastic energy. Here, the frequency and lineshapes of the particle eigenmodes are discussed as function of increased interaction and departure from spherical symmetry. The latter is realized by uniaxial stretching of polystyrene spheres, that can be aligned in an alternating electric field. The resulting spheroidal crystals clearly exhibit anisotropic phononic properties. Establishing reliable predictions of acoustic wave propagation, necessary to advance, e.g., optomechanics and phononic devices is the ultimate aim of this thesis.
Resumo:
The accretionary shells of bivalve mollusks can provide environmental information, such as water temperature, precipitation, freshwater fluxes, primary productivity and anthropogenic activities in the form of variable growth rates and variable geochemical properties, such as stable oxygen and carbon isotopes. However, paleoenvironmental reconstructions are constrained by uncertainties about isotopic equilibrium fractionation during shell formation, which is generally acknowledged as a reasonable assumption for bivalves, but it has been disputed in several species. Furthermore, the variation in shell growth rates is accepted to rely on multiple environmental variables, such as temperature, food availability and salinity, but can differ from species to species. Therefore, it is necessary to perform species-specific calibration studies for both isotope proxies and shell growth rates before they can be used with confidence for environmental interpretations of the past. Accordingly, the principal objective of this Ph.D research is to examine the reliability of selected bivalve species, the long-lived Eurhomalea exalbida (Dillwyn), the short-lived and fast growing species Paphia undulata (Born 1778), and the freshwater mussel Margaritifera falcata (Gould 1850), as paleoenvironmental proxy archives.rnThe first part is focused on δ18Oshell and shell growth history of live-collected E. exalbida from the Falkland Islands. The most remarkable finding, however, is that E. exalbida formed its shell with an offset of -0.48‰ to -1.91‰ from the expected oxygen isotopic equilibrium with the ambient water. If this remained unnoticed, paleotemperature estimates would overestimate actual water temperatures by 2.1-8.3°C. With increasing ontogenetic age, the discrepancy between measured and reconstructed temperatures increased exponentially, irrespective of the seasonally varying shell growth rates. This study clearly demonstrates that, when the disequilibrium fractionation effect is taken into account, E. exalbida can serve as a high-resolution paleoclimate archive for the southern South America. The species therefore provides quantifiable temperature estimates, which yields new insights into long-term paleoclimate dynamics for mid to high latitudes on the southern hemisphere.rnThe stable carbon isotope of biogenic carbonates is generally considered to be useful for reconstruction of seawater dissolved inorganic carbon. The δ13Cshell composition of E. exalbida was therefore, investigated in the second part of this study. This chapter focuses on inter-annual and intra-annual variations in δ13Cshell. Environmental records in δ13Cshell are found to be strongly obscured by changes in shell growth rates, even if removing the ontogenetic decreasing trend. This suggests that δ13Cshell in E. exalbida may not be useful as an environmental proxy, but a potential tool for ecological investigations. rnIn addition to long-lived bivalve species, short-lived species that secrete their shells extremely fast, can also be useful for environmental reconstructions, especially as a high-resolution recorder. Therefore, P. undulata from Daya Bay, South China Sea was utilized in Chapter 4 to evaluate and establish a potential proxy archive for past variations of the East Asian monsoon on shorter time-scales. The δ18Oshell can provide qualitative estimates of the amount of monsoonal rain and terrestrial runoff and the δ13Cshell likely reflect the relative amount of isotopically light terrestrial carbon that reaches the ocean during the summer monsoon season. Therefore, shells of P. undulata can provide serviceable proxy archives to reconstruct the frequency of exceptional summer monsoons in the past. The relative strength of monsoon-related precipitation and associated changes in ocean salinity and the δ13C ratios of the dissolved inorganic carbon signature (δ13CDIC) can be estimated from the δ18Oshell and δ13Cshell values as well as shell growth patterns. rnIn the final part, the freshwater pearl shell M. falcata from four rivers in British Columbia, Canada was preliminarily studied concerning the lifespans and the shell growth rates. Two groups separated by the Georgia Strait can be clearly distinguished. Specimens from the western group exhibit a shorter lifespan, while the eastern group live longer. Moreover, the average lifespan seems to decrease from south to north. The computed growth equations from the eastern and western groups differ as well. The western group exhibits a lower growth rate, while bivalves from the eastern group grow faster. The land use history seems to be responsible for the differences in lifespans of the specimens from the two groups. Differences in growth rate may be induced by differences in water temperature or nutrient input also related to the land use activities.