7 resultados para Resolution of Homonymy

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to measure the stress inside a hard micro object under extreme compression. To measure the internal stress, we compressed ruby spheres (a-Al2O3: Cr3+, 150 µm diameter) between two sapphire plates. Ruby fluorescence spectrum shifts to longer wavelengths under compression and can be related to the internal stress by a conversion coefficient. A confocal laser scanning microscope was used to excite and collect fluorescence at desired local spots inside the ruby sphere with spatial resolution of about 1 µm3. Under static external loads, the stress distribution within the center plane of the ruby sphere was measured directly for the first time. The result agreed to Hertz’s law. The stress across the contact area showed a hemispherical profile. The measured contact radius was in accord with the calculation by Hertz’s equation. Stress-load curves showed spike-like decrease after entering non-elastic phase, indicating the formation and coalescence of microcracks, which led to relaxing of stress. In the vicinity of the contact area luminescence spectra with multiple peaks were observed. This indicated the presence of domains of different stress, which were mechanically decoupled. Repeated loading cycles were applied to study the fatigue of ruby at the contact region. Progressive fatigue was observed when the load exceeded 1 N. As long as the load did not exceed 2 N stress-load curves were still continuous and could be described by Hertz’s law with a reduced Young’s modulus. Once the load exceeded 2 N, periodical spike-like decreases of the stress could be observed, implying a “memory effect” under repeated loading cycles. Vibration loading with higher frequencies was applied by a piezo. Redistributions of intensity on the fluorescence spectra were observed and it was attributed to the repopulation of the micro domains of different elasticity. Two stages of under vibration loading were suggested. In the first stage continuous damage carried on until certain limit, by which the second stage, e.g. breakage, followed in a discontinuous manner.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Zur geometrischen Vermessung und Beschreibung von Einschlüssen in natürlichen sowie im Labor geschaffenen Eispartikeln wurde ein neuartiger Versuchaufbau an der Tomographie-Endstation der Material Science Beam Line an der Swiss Light Source (SLS, Paul Scherrer Institut, Villigen, Schweiz) entwickelt. Dieser besteht aus einer Plexiglas-Tasse und einem doppelwandigen Kaptonfolien-Käfig, der wiederum auf die Düse eines CryojetXL (Oxford Instruments) montiert wurde. Abgesehen von dem hohen Maß an Flexibilit¨at bez¨uglich der Installation erlaubt es dieser Aufbau, die Temperatur des Experiments mit einer Genauigkeit von ± 1 K über einen Bereich von 271 K bis 220 K zu regeln. In den hier beschriebenen Experimenten wurde eine räumliche Auflösung von 1.4 µm erzielt.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Die Hämocyanine der Cephalopoden Nautilus pompilius und Sepia officinalis sorgen für den Sauerstofftransport zwischen den Kiemen und den Geweben. Sie bestehen aus einem zylindrischen Dekamer mit interner Kragenstruktur. Während eine Untereinheit (also eine Polypeptidkette) bei NpH aus sieben paralogen funktionellen Domänen (FU-a bis FU-g) besteht, führte ein Genduplikationsereignis der FU-d zu acht FUs in SoH (a, b, c, d, d´, e, f, g). In allen Mollusken Hämocyaninen bilden sechs dieser FUs den äußeren Ring und die restlichen die interne Kragenstruktur. rnrnIn dieser Arbeit wurde ein dreidimensionales Modell des Hämocyanins von Sepia officinalis (SoH) erstellt. Die Rekonstruktion, mit einer Auflösung von 8,8Å (FSC=0,5), erlaubt das Einpassen von Homolologiemodellen und somit das Erstellen eines molekularen Modells mit pseudo atomarer Auflösung. Des Weiteren wurden zwei Rekonstruktionen des Hämocyanins von Nautilus pompilius (NpH) in verschiedenen Oxygenierungszuständen erstellt. Die auf 10 und 8,1Å aufgelösten Modelle zeigen zwei verschiedene Konformationen des Proteins. Daraus ließ sich eine Modellvorstellung über die allosterische Funktionsweise ableiten. Die hier erreichte Auflösung von 8Å ist die momentan höchste eines Molluskenhämocyanins. rnAuf Grundlage des molekularen Modells von SoH konnte die Topologie des Proteins aufgeklärt werden. Es wurde gezeigt, dass die zusätzliche FU-d´ in den Kragen integriert ist und somit die prinzipielle Wandarchitektur aller Mollusken Hämocyanine identisch ist. Wie die Analyse des erstellten molekularen Modells zeigt werden sind die beiden Isoformen (SoH1 und SoH2) in den Bereichen der Interfaces nahezu identisch; auch der Vergleich mit NpH zeigt grosse Übereinstimmungen. Des weiteren konnte eine Fülle von Informationen bezüglich der allosterischen Signalübertragung innerhalb des Moleküls gewonnen werden. rnDer Versuch, NpH in verschiedenen Oxygenierungszuständen zu zeigen, war erfolgreich. Die Datensätze, die unter zwei atmosphärischen Bedingungen präpariert wurden, führten reproduzierbar zu zwei unterschiedlichen Rekonstruktionen. Dies zeigt, daß der hier entwickelte experimentelle Ansatz funktioniert. Er kann nun routinemäßig auf andere Proteine angewandt werden. Wie der strukturelle Vergleich zeigte, verändert sich die Orientierung der FUs durch die Oxygenierung leicht. Dies wiederum beeinflusst die Anordnung innerhalb der Interfaces sowie die Abstände zwischen den beteiligten Aminosäuren. Aus dieser Analyse konnte eine Modellvorstellung zum allosterischen Signaltransfer innerhalb des Moleküls abgeleitet werden, die auf einer Umordnung von Salzbrücken basiert.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals.rnrnThe integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph.rnrnStarting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative step to an abstract combinatorial problem, known as Hironaka's polyhedra game. We present a publicly available implementation of the improved algorithm. Furthermore we explain the relationship of the sector decomposition method with the resolution of singularities of a variety, given by a sequence of blow-ups, in algebraic geometry.rnrnMotivated by the connection between Feynman integrals and topics of algebraic geometry we consider the set of periods as defined by Kontsevich and Zagier. This special set of numbers contains the set of multiple zeta values and certain values of polylogarithms, which in turn are known to be present in results for Laurent coefficients of certain dimensionally regularized Feynman integrals. By use of the extended sector decomposition algorithm we prove a theorem which implies, that the Laurent coefficients of an arbitrary Feynman integral are periods if the masses and kinematical invariants take values in the Euclidean momentum region. The statement is formulated for an even more general class of integrals, allowing for an arbitrary number of polynomials in the integrand.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Given a reductive group G acting on an affine scheme X over C and a Hilbert function h: Irr G → N_0, we construct the moduli space M_Ө(X) of Ө-stable (G,h)-constellations on X, which is a common generalisation of the invariant Hilbert scheme after Alexeev and Brion and the moduli space of Ө-stable G-constellations for finite groups G introduced by Craw and Ishii. Our construction of a morphism M_Ө(X) → X//G makes this moduli space a candidate for a resolution of singularities of the quotient X//G. Furthermore, we determine the invariant Hilbert scheme of the zero fibre of the moment map of an action of Sl_2 on (C²)⁶ as one of the first examples of invariant Hilbert schemes with multiplicities. While doing this, we present a general procedure for the realisation of such calculations. We also consider questions of smoothness and connectedness and thereby show that our Hilbert scheme gives a resolution of singularities of the symplectic reduction of the action.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The upgrade of the Mainz Mikrotron (MAMI) electron accelerator facility in 2007 which raised the beam energy up to 1.5,GeV, gives the opportunity to study strangeness production channels through electromagnetic process. The Kaon Spectrometer (KAOS) managed by the A1 Collaboration, enables the efficient detection of the kaons associated with strangeness electroproduction. Used as a single arm spectrometer, it can be combined with the existing high-resolution spectrometers for exclusive measurements in the kinematic domain accessible to them.rnrnFor studying hypernuclear production in the ^A Z(e,e'K^+) _Lambda ^A(Z-1) reaction, the detection of electrons at very forward angles is needed. Therefore, the use of KAOS as a double-arm spectrometer for detection of kaons and the electrons at the same time is mandatory. Thus, the electron arm should be provided with a new detector package, with high counting rate capability and high granularity for a good spatial resolution. To this end, a new state-of-the-art scintillating fiber hodoscope has been developed as an electron detector.rnrnThe hodoscope is made of two planes with a total of 18432 scintillating double-clad fibers of 0.83 mm diameter. Each plane is formed by 72 modules. Each module is formed from a 60deg slanted multi-layer bundle, where 4 fibers of a tilted column are connected to a common read out. The read-out is made with 32 channels of linear array multianode photomultipliers. Signal processing makes use of newly developed double-threshold discriminators. The discriminated signal is sent in parallel to dead-time free time-to-digital modules and to logic modules for triggering purposes.rnrnTwo fiber modules were tested with a carbon beam at GSI, showing a time resolution of 220 ps (FWHM) and a position residual of 270 microm m (FWHM) with a detection efficiency epsilon>99%.rnrnThe characterization of the spectrometer arm has been achieved through simulations calculating the transfer matrix of track parameters from the fiber detector focal plane to the primary vertex. This transfer matrix has been calculated to first order using beam transport optics and has been checked by quasielastic scattering off a carbon target, where the full kinematics is determined by measuring the recoil proton momentum. The reconstruction accuracy for the emission parameters at the quasielastic vertex was found to be on the order of 0.3 % in first test realized.rnrnThe design, construction process, commissioning, testing and characterization of the fiber hodoscope are presented in this work which has been developed at the Institut für Kernphysik of the Johannes Gutenberg - Universität Mainz.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Transportprozesse von anisotropen metallischen Nanopartikeln wie zum Beispiel Gold-Nanostäbchen in komplexen Flüssigkeiten und/oder begrenzten Geometrien spielen eine bedeutende Rolle in einer Vielzahl von biomedizinischen und industriellen Anwendungen. Ein Weg zu einem tiefen, grundlegenden Verständnis von Transportmechanismen ist die Verwendung zweier leistungsstarker Methoden - dynamischer Lichtstreuung (DLS) und resonanzverstärkter Lichtstreuung (REDLS) in der Nähe einer Grenzfläche. In dieser Arbeit wurden nanomolare Suspensionen von Gold-Nanostäbchen, stabilisiert mit Cetyltrimethylammoniumbromid (CTAB), mit DLS sowie in der Nähe einer Grenzfläche mit REDLS untersucht. Mit DLS wurde eine wellenlängenabhängige Verstärkung der anisotropen Streuung beobachtet, welche sich durch die Anregung von longitudinaler Oberflächenplasmonenresonanz ergibt. Die hohe Streuintensität nahe der longitudinalen Oberflächenplasmonenresonanzfrequenz für Stäbchen, welche parallel zum anregenden optischen Feld liegen, erlaubte die Auflösung der translationalen Anisotropie in einem isotropen Medium. Diese wellenlängenabhängige anisotrope Lichtstreuung ermöglicht neue Anwendungen wie etwa die Untersuchung der Dynamik einzelner Partikel in komplexen Umgebungen mittels depolarisierter dynamischer Lichtstreuung. In der Nähe einer Grenzfläche wurde eine starke Verlangsamung der translationalen Diffusion beobachtet. Hingegen zeigte sich für die Rotation zwar eine ausgeprägte aber weniger starke Verlangsamung. Um den möglichen Einfluss von Ladung auf der festen Grenzfläche zu untersuchen, wurde das Metall mit elektrisch neutralem Polymethylmethacrylat (PMMA) beschichtet. In einem weiteren Ansatz wurde das CTAB in der Gold-Nanostäbchen Lösung durch das kovalent gebundene 16-Mercaptohexadecyltrimethylammoniumbromid (MTAB) ersetzt. Daraus ergab sich eine deutlich geringere Verlangsamung.