7 resultados para Reflection theory on compensation
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Zusammenfassung:Mit Hilfe einer neuen Formel für die Minerale der Pyrochlor-Gruppe werden sämtliche Endglieder der Na-Ca-Mikrolithe und der Ba-haltigen Mikrolithe aus der Pegmatit-Provinz Nazareno beschrieben: Die Na-reichsten Proben haben nahezu die Idealzusammensetzung eines idealen Pyrochlors, d.h. . Die Ca-reichsten Varietäten weisen maximal auf, wobei der Besetzungsanteil des Ca am A2+ ca. 93% beträgt. Die Ba-haltigen Mikrolithe sind durch eine Defektstruktur gekennzeichnet, wobei für das mögliche Endglied kein Beispiel in den Daten vorliegt. Das Endglied mit dem geringsten Defektcharakter hat folgende Stöchiometrie:
Resumo:
Das Ehrenamt hat sowohl in der Forschung als auch in der Politik seit Ende der 1980er Jahre zunehmend an Bedeutung gewonnen. Durch ökonomische und soziale Veränderungen, insbesondere die Reduktion staatlicher Leistungen, rückten Wohlfahrts- und Interessenverbände, Bürger- und Umweltinitiativen, Stiftungen und nichtstaatliche Organisationen verstärkt ins öffentliche Interesse. Damit einher ging die Diskussion um freiwillige, unentgeltliche Tätigkeit und die Personen, die diese Tätigkeiten ausüben. Offensichtlich sind nicht alle Menschen bereit, sich ehrenamtlich zu engagieren. Je nach Datenmaterial wird von einer bürgerschaftlichen Beteiligung am ehrenamtlichen Engagement zwischen 13% und 38% ausgegangen (vgl. Rauschenbach 1999: 400). Deshalb stellt sich neben Fragen nach der Funktion des Ehrenamts für die Ausgestaltung der modernen Gesellschaft und der Stabilisationsfunktion für Non-Profit-Organisationen u.a. auch die Frage danach, wie Bürgerinnen und Bürger für ehrenamtliche Dienste rekrutiert werden können. Es interessieren die Gründe dafür, dass sich manche Menschen freiwillig engagieren, während dies andere nicht tun. In der vorliegenden Arbeit soll das Augenmerk auf Personen gerichtet werden, die bereits freiwillig und unentgeltlich tätig sind. Dies schließt auch jene ein, die sich als Freigestellte in den entsprechenden Organisationen engagieren. Gefragt wird nach der Bedingung für die Motivation freiwillig tätiger Menschen, ihr Engagement aufrechtzuerhalten. Die langfristige Bindung Ehrenamtlicher an die Organisation steht damit im Vordergrund. Hiermit wird ein Beitrag zur Diskussion um die Aufrechterhaltung der Effizienzfähigkeit von Freiwilligenorganisationen geleistet, deren Ziel- und Zweckerreichung, so die These, durch die Motivation der Mitglieder maßgeblich getragen wird. Arbeits- und organisationstheoretische Arbeiten messen der Zufriedenheit von Personen dabei entscheidende Bedeutung zu. Die Besonderheit dieser Arbeit liegt in der Auseinandersetzung damit, Ansätze, die in der Forschung auf die Motivation von Angestellten in Unternehmen angewendet werden, auf die Motivation ehrenamtlich Tätiger theoretisch zu übertragen und diese Übertragung empirisch zu überprüfen. Am Beispiel des THW soll untersucht werden, ob die Motivation ehrenamtlicher Mitglieder von der Zufriedenheit mit dem Engagement abhängt.
Resumo:
Während das Standardmodell der Elementarteilchenphysik eine konsistente, renormierbare Quantenfeldtheorie dreier der vier bekannten Wechselwirkungen darstellt, bleibt die Quantisierung der Gravitation ein bislang ungelöstes Problem. In den letzten Jahren haben sich jedoch Hinweise ergeben, nach denen metrische Gravitation asymptotisch sicher ist. Das bedeutet, daß sich auch für diese Wechselwirkung eine Quantenfeldtheorie konstruieren läßt. Diese ist dann in einem verallgemeinerten Sinne renormierbar, der nicht mehr explizit Bezug auf die Störungstheorie nimmt. Zudem sagt dieser Zugang, der auf der Wilsonschen Renormierungsgruppe beruht, die korrekte mikroskopische Wirkung der Theorie voraus. Klassisch ist metrische Gravitation auf dem Niveau der Vakuumfeldgleichungen äquivalent zur Einstein-Cartan-Theorie, die das Vielbein und den Spinzusammenhang als fundamentale Variablen verwendet. Diese Theorie besitzt allerdings mehr Freiheitsgrade, eine größere Eichgruppe, und die zugrundeliegende Wirkung ist von erster Ordnung. Alle diese Eigenschaften erschweren eine zur metrischen Gravitation analoge Behandlung.rnrnIm Rahmen dieser Arbeit wird eine dreidimensionale Trunkierung von der Art einer verallgemeinerten Hilbert-Palatini-Wirkung untersucht, die neben dem Laufen der Newton-Konstante und der kosmologischen Konstante auch die Renormierung des Immirzi-Parameters erfaßt. Trotz der angedeuteten Schwierigkeiten war es möglich, das Spektrum des freien Hilbert-Palatini-Propagators analytisch zu berechnen. Auf dessen Grundlage wird eine Flußgleichung vom Propertime-Typ konstruiert. Zudem werden geeignete Eichbedingungen gewählt und detailliert analysiert. Dabei macht die Struktur der Eichgruppe eine Kovariantisierung der Eichtransformationen erforderlich. Der resultierende Fluß wird für verschiedene Regularisierungsschemata und Eichparameter untersucht. Dies liefert auch im Einstein-Cartan-Zugang berzeugende Hinweise auf asymptotische Sicherheit und damit auf die mögliche Existenz einer mathematisch konsistenten und prädiktiven fundamentalen Quantentheorie der Gravitation. Insbesondere findet man ein Paar nicht-Gaußscher Fixpunkte, das Anti-Screening aufweist. An diesen sind die Newton-Konstante und die kosmologische Konstante jeweils relevante Kopplungen, wohingegen der Immirzi-Parameter an einem Fixpunkt irrelevant und an dem anderen relevant ist. Zudem ist die Beta-Funktion des Immirzi-Parameters von bemerkenswert einfacher Form. Die Resultate sind robust gegenüber Variationen des Regularisierungsschemas. Allerdings sollten zukünftige Untersuchungen die bestehenden Eichabhängigkeiten reduzieren.
Resumo:
Intersection theory on moduli spaces has lead to immense progress in certain areas of enumerative geometry. For some important areas, most notably counting stable maps and counting stable sheaves, it is important to work with a virtual fundamental class instead of the usual fundamental class of the moduli space. The crucial prerequisite for the existence of such a class is a two-term complex controlling deformations of the moduli space. Kontsevich conjectured in 1994 that there should exist derived version of spaces with this specific property. Another hint at the existence of these spaces comes from derived algebraic geometry. It is expected that for every pair of a space and a complex controlling deformations of the space their exists, under some additional hypothesis, a derived version of the space having the chosen complex as cotangent complex. In this thesis one version of these additional hypothesis is identified. We then show that every space admitting a two-term complex controlling deformations satisfies these hypothesis, and we finally construct the derived spaces.
Resumo:
I present a new experimental method called Total Internal Reflection Fluorescence Cross-Correlation Spectroscopy (TIR-FCCS). It is a method that can probe hydrodynamic flows near solid surfaces, on length scales of tens of nanometres. Fluorescent tracers flowing with the liquid are excited by evanescent light, produced by epi-illumination through the periphery of a high NA oil-immersion objective. Due to the fast decay of the evanescent wave, fluorescence only occurs for tracers in the ~100 nm proximity of the surface, thus resulting in very high normal resolution. The time-resolved fluorescence intensity signals from two laterally shifted (in flow direction) observation volumes, created by two confocal pinholes are independently measured and recorded. The cross-correlation of these signals provides important information for the tracers’ motion and thus their flow velocity. Due to the high sensitivity of the method, fluorescent species with different size, down to single dye molecules can be used as tracers. The aim of my work was to build an experimental setup for TIR-FCCS and use it to experimentally measure the shear rate and slip length of water flowing on hydrophilic and hydrophobic surfaces. However, in order to extract these parameters from the measured correlation curves a quantitative data analysis is needed. This is not straightforward task due to the complexity of the problem, which makes the derivation of analytical expressions for the correlation functions needed to fit the experimental data, impossible. Therefore in order to process and interpret the experimental results I also describe a new numerical method of data analysis of the acquired auto- and cross-correlation curves – Brownian Dynamics techniques are used to produce simulated auto- and cross-correlation functions and to fit the corresponding experimental data. I show how to combine detailed and fairly realistic theoretical modelling of the phenomena with accurate measurements of the correlation functions, in order to establish a fully quantitative method to retrieve the flow properties from the experiments. An importance-sampling Monte Carlo procedure is employed in order to fit the experiments. This provides the optimum parameter values together with their statistical error bars. The approach is well suited for both modern desktop PC machines and massively parallel computers. The latter allows making the data analysis within short computing times. I applied this method to study flow of aqueous electrolyte solution near smooth hydrophilic and hydrophobic surfaces. Generally on hydrophilic surface slip is not expected, while on hydrophobic surface some slippage may exists. Our results show that on both hydrophilic and moderately hydrophobic (contact angle ~85°) surfaces the slip length is ~10-15nm or lower, and within the limitations of the experiments and the model, indistinguishable from zero.
Resumo:
The present thesis is a contribution to the theory of algebras of pseudodifferential operators on singular settings. In particular, we focus on the $b$-calculus and the calculus on conformally compact spaces in the sense of Mazzeo and Melrose in connection with the notion of spectral invariant transmission operator algebras. We summarize results given by Gramsch et. al. on the construction of $Psi_0$-and $Psi*$-algebras and the corresponding scales of generalized Sobolev spaces using commutators of certain closed operators and derivations. In the case of a manifold with corners $Z$ we construct a $Psi*$-completion $A_b(Z,{}^bOmega^{1/2})$ of the algebra of zero order $b$-pseudodifferential operators $Psi_{b,cl}(Z, {}^bOmega^{1/2})$ in the corresponding $C*$-closure $B(Z,{}^bOmega^{12})hookrightarrow L(L^2(Z,{}^bOmega^{1/2}))$. The construction will also provide that localised to the (smooth) interior of Z the operators in the $A_b(Z, {}^bOmega^{1/2})$ can be represented as ordinary pseudodifferential operators. In connection with the notion of solvable $C*$-algebras - introduced by Dynin - we calculate the length of the $C*$-closure of $Psi_{b,cl}^0(F,{}^bOmega^{1/2},R^{E(F)})$ in $B(F,{}^bOmega^{1/2}),R^{E(F)})$ by localizing $B(Z, {}^bOmega^{1/2})$ along the boundary face $F$ using the (extended) indical familiy $I^B_{FZ}$. Moreover, we discuss how one can localise a certain solving ideal chain of $B(Z, {}^bOmega^{1/2})$ in neighbourhoods $U_p$ of arbitrary points $pin Z$. This localisation process will recover the singular structure of $U_p$; further, the induced length function $l_p$ is shown to be upper semi-continuous. We give construction methods for $Psi*$- and $C*$-algebras admitting only infinite long solving ideal chains. These algebras will first be realized as unconnected direct sums of (solvable) $C*$-algebras and then refined such that the resulting algebras have arcwise connected spaces of one dimensional representations. In addition, we recall the notion of transmission algebras on manifolds with corners $(Z_i)_{iin N}$ following an idea of Ali Mehmeti, Gramsch et. al. Thereby, we connect the underlying $C^infty$-function spaces using point evaluations in the smooth parts of the $Z_i$ and use generalized Laplacians to generate an appropriate scale of Sobolev spaces. Moreover, it is possible to associate generalized (solving) ideal chains to these algebras, such that to every $ninN$ there exists an ideal chain of length $n$ within the algebra. Finally, we discuss the $K$-theory for algebras of pseudodifferential operators on conformally compact manifolds $X$ and give an index theorem for these operators. In addition, we prove that the Dirac-operator associated to the metric of a conformally compact manifold $X$ is not a Fredholm operator.
Resumo:
Die vorliegende Arbeit widmet sich der Spektraltheorie von Differentialoperatoren auf metrischen Graphen und von indefiniten Differentialoperatoren auf beschränkten Gebieten. Sie besteht aus zwei Teilen. Im Ersten werden endliche, nicht notwendigerweise kompakte, metrische Graphen und die Hilberträume von quadratintegrierbaren Funktionen auf diesen betrachtet. Alle quasi-m-akkretiven Laplaceoperatoren auf solchen Graphen werden charakterisiert, und Abschätzungen an die negativen Eigenwerte selbstadjungierter Laplaceoperatoren werden hergeleitet. Weiterhin wird die Wohlgestelltheit eines gemischten Diffusions- und Transportproblems auf kompakten Graphen durch die Anwendung von Halbgruppenmethoden untersucht. Eine Verallgemeinerung des indefiniten Operators $-tfrac{d}{dx}sgn(x)tfrac{d}{dx}$ von Intervallen auf metrische Graphen wird eingeführt. Die Spektral- und Streutheorie der selbstadjungierten Realisierungen wird detailliert besprochen. Im zweiten Teil der Arbeit werden Operatoren untersucht, die mit indefiniten Formen der Art $langlegrad v, A(cdot)grad urangle$ mit $u,vin H_0^1(Omega)subset L^2(Omega)$ und $OmegasubsetR^d$ beschränkt, assoziiert sind. Das Eigenwertverhalten entspricht in Dimension $d=1$ einer verallgemeinerten Weylschen Asymptotik und für $dgeq 2$ werden Abschätzungen an die Eigenwerte bewiesen. Die Frage, wann indefinite Formmethoden für Dimensionen $dgeq 2$ anwendbar sind, bleibt offen und wird diskutiert.