3 resultados para Random Polarizations
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
The goal of this thesis is the acceleration of numerical calculations of QCD observables, both at leading order and next–to–leading order in the coupling constant. In particular, the optimization of helicity and spin summation in the context of VEGAS Monte Carlo algorithms is investigated. In the literature, two such methods are mentioned but without detailed analyses. Only one of these methods can be used at next–to–leading order. This work presents a total of five different methods that replace the helicity sums with a Monte Carlo integration. This integration can be combined with the existing phase space integral, in the hope that this causes less overhead than the complete summation. For three of these methods, an extension to existing subtraction terms is developed which is required to enable next–to–leading order calculations. All methods are analyzed with respect to efficiency, accuracy, and ease of implementation before they are compared with each other. In this process, one method shows clear advantages in relation to all others.
Resumo:
In this thesis we present techniques that can be used to speed up the calculation of perturbative matrix elements for observables with many legs ($n = 3, 4, 5, 6, 7, ldots$). We investigate several ways to achieve this, including the use of Monte Carlo methods, the leading-color approximation, numerically less precise but faster operations, and SSE-vectorization. An important idea is the use of enquote{random polarizations} for which we derive subtraction terms for the real corrections in next-to-leading order calculations. We present the effectiveness of all these methods in the context of electron-positron scattering to $n$ jets, $n$ ranging from two to seven.
Resumo:
This thesis deals with three different physical models, where each model involves a random component which is linked to a cubic lattice. First, a model is studied, which is used in numerical calculations of Quantum Chromodynamics.In these calculations random gauge-fields are distributed on the bonds of the lattice. The formulation of the model is fitted into the mathematical framework of ergodic operator families. We prove, that for small coupling constants, the ergodicity of the underlying probability measure is indeed ensured and that the integrated density of states of the Wilson-Dirac operator exists. The physical situations treated in the next two chapters are more similar to one another. In both cases the principle idea is to study a fermion system in a cubic crystal with impurities, that are modeled by a random potential located at the lattice sites. In the second model we apply the Hartree-Fock approximation to such a system. For the case of reduced Hartree-Fock theory at positive temperatures and a fixed chemical potential we consider the limit of an infinite system. In that case we show the existence and uniqueness of minimizers of the Hartree-Fock functional. In the third model we formulate the fermion system algebraically via C*-algebras. The question imposed here is to calculate the heat production of the system under the influence of an outer electromagnetic field. We show that the heat production corresponds exactly to what is empirically predicted by Joule's law in the regime of linear response.