7 resultados para REAL-SPACE
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In dieser Arbeit wird eine Klasse von stochastischen Prozessen untersucht, die eine abstrakte Verzweigungseigenschaft besitzen. Die betrachteten Prozesse sind homogene Markov-Prozesse in stetiger Zeit mit Zuständen im mehrdimensionalen reellen Raum und dessen Ein-Punkt-Kompaktifizierung. Ausgehend von Minimalforderungen an die zugehörige Übergangsfunktion wird eine vollständige Charakterisierung der endlichdimensionalen Verteilungen mehrdimensionaler kontinuierlicher Verzweigungsprozesse vorgenommen. Mit Hilfe eines erweiterten Laplace-Kalküls wird gezeigt, dass jeder solche Prozess durch eine bestimmte spektral positive unendlich teilbare Verteilung eindeutig bestimmt ist. Umgekehrt wird nachgewiesen, dass zu jeder solchen unendlich teilbaren Verteilung ein zugehöriger Verzweigungsprozess konstruiert werden kann. Mit Hilfe der allgemeinen Theorie Markovscher Operatorhalbgruppen wird sichergestellt, dass jeder mehrdimensionale kontinuierliche Verzweigungsprozess eine Version mit Pfaden im Raum der cadlag-Funktionen besitzt. Ferner kann die (funktionale) schwache Konvergenz der Prozesse auf die vage Konvergenz der zugehörigen Charakterisierungen zurückgeführt werden. Hieraus folgen allgemeine Approximations- und Konvergenzsätze für die betrachtete Klasse von Prozessen. Diese allgemeinen Resultate werden auf die Unterklasse der sich verzweigenden Diffusionen angewendet. Es wird gezeigt, dass für diese Prozesse stets eine Version mit stetigen Pfaden existiert. Schließlich wird die allgemeinste Form der Fellerschen Diffusionsapproximation für mehrtypige Galton-Watson-Prozesse bewiesen.
Resumo:
Der ungarische Mathematiker Friedrich Riesz studierte und forschte in den mathematischen Milieus von Budapest, Göttingen und Paris. Die vorliegende Arbeit möchte zeigen, daß die Beiträge von Riesz zur Herausbildung eines abstrakten Raumbegriffs durch eine Verknüpfung von Entwicklungen aus allen drei mathematischen Kulturen ermöglicht wurden, in denen er sich bewegt hat. Die Arbeit konzentriert sich dabei auf den von Riesz 1906 veröffentlichten Text „Die Genesis des Raumbegriffs". Sowohl für seine Fragestellungen als auch für seinen methodischen Zugang fand Riesz vor allem in Frankreich und Göttingen Anregungen: Henri Poincarés Beiträge zur Raumdiskussion, Maurice Fréchets Ansätze einer abstrakten Punktmengenlehre, David Hilberts Charakterisierung der Stetigkeit des geometrischen Raumes. Diese Impulse aufgreifend suchte Riesz ein Konzept zu schaffen, das die Forderungen von Poincaré, Hilbert und Fréchet gleichermaßen erfüllte. So schlug Riesz einen allgemeinen Begriff des mathematischen Kontinuums vor, dem sich Fréchets Konzept der L-Klasse, Hilberts Mannigfaltigkeitsbegriff und Poincarés erfahrungsgemäße Vorstellung der Stetigkeit des ‚wirklichen' Raumes unterordnen ließen. Für die Durchführung seines Projekts wandte Riesz mengentheoretische und axiomatische Methoden an, die er der Analysis in Frankreich und der Geometrie bei Hilbert entnommen hatte. Riesz' aufnahmebereite Haltung spielte dabei eine zentrale Rolle. Diese Haltung kann wiederum als ein Element der ungarischen mathematischen Kultur gedeutet werden, welche sich damals ihrerseits stark an den Entwicklungen in Frankreich und Deutschland orientierte. Darüber hinaus enthält Riesz’ Arbeit Ansätze einer konstruktiven Mengenlehre, die auf René Baire zurückzuführen sind. Aus diesen unerwarteten Ergebnissen ergibt sich die Aufgabe, den Bezug von Riesz’ und Baires Ideen zur späteren intuitionistischen Mengenlehre von L.E.J. Brouwer und Hermann Weyl weiter zu erforschen.
Resumo:
Die Röntgenabsorptionsspektroskopie (Extended X-ray absorption fine structure (EXAFS) spectroscopy) ist eine wichtige Methode zur Speziation von Schwermetallen in einem weiten Bereich von umweltrelevanten Systemen. Um Strukturparameter wie Koordinationszahl, Atomabstand und Debye-Waller Faktoren für die nächsten Nachbarn eines absorbierenden Atoms zu bestimmen, ist es für experimentelle EXAFS-Spektren üblich, unter Verwendung von Modellstrukturen einen „Least-Squares-Fit“ durchzuführen. Oft können verschiedene Modellstrukturen mit völlig unterschiedlicher chemischer Bedeutung die experimentellen EXAFS-Daten gleich gut beschreiben. Als gute Alternative zum konventionellen Kurven-Fit bietet sich das modifizierte Tikhonov-Regularisationsverfahren an. Ergänzend zur Tikhonov-Standardvariationsmethode enthält der in dieser Arbeit vorgestellte Algorithmus zwei weitere Schritte, nämlich die Anwendung des „Method of Separating Functionals“ und ein Iterationsverfahren mit Filtration im realen Raum. Um das modifizierte Tikhonov-Regularisationsverfahren zu testen und zu bestätigen wurden sowohl simulierte als auch experimentell gemessene EXAFS-Spektren einer kristallinen U(VI)-Verbindung mit bekannter Struktur, nämlich Soddyit (UO2)2SiO4 x 2H2O, untersucht. Die Leistungsfähigkeit dieser neuen Methode zur Auswertung von EXAFS-Spektren wird durch ihre Anwendung auf die Analyse von Proben mit unbekannter Struktur gezeigt, wie sie bei der Sorption von U(VI) bzw. von Pu(III)/Pu(IV) an Kaolinit auftreten. Ziel der Dissertation war es, die immer noch nicht voll ausgeschöpften Möglichkeiten des modifizierten Tikhonov-Regularisationsverfahrens für die Auswertung von EXAFS-Spektren aufzuzeigen. Die Ergebnisse lassen sich in zwei Kategorien einteilen. Die erste beinhaltet die Entwicklung des Tikhonov-Regularisationsverfahrens für die Analyse von EXAFS-Spektren von Mehrkomponentensystemen, insbesondere die Wahl bestimmter Regularisationsparameter und den Einfluss von Mehrfachstreuung, experimentell bedingtem Rauschen, etc. auf die Strukturparameter. Der zweite Teil beinhaltet die Speziation von sorbiertem U(VI) und Pu(III)/Pu(IV) an Kaolinit, basierend auf experimentellen EXAFS-Spektren, die mit Hilfe des modifizierten Tikhonov-Regularisationsverfahren ausgewertet und mit Hilfe konventioneller EXAFS-Analyse durch „Least-Squares-Fit“ bestätigt wurden.
Resumo:
The steadily increasing diversity of colloidal systems demands for new theoretical approaches and a cautious experimental characterization. Here we present a combined rheological and microscopical study of colloids in their arrested state whereas we did not aim for a generalized treatise but rather focused on a few model colloids, liquid crystal based colloidal suspensions and sedimented colloidal films. We laid special emphasis on the understanding of the mutual influence of dominant interaction mechanisms, structural characteristics and the particle properties on the mechanical behavior of the colloid. The application of novel combinations of experimental techniques played an important role in these studies. Beside of piezo-rheometry we employed nanoindentation experiments and associated standardized analysis procedures. These rheometric methods were complemented by real space images using confocal microscopy. The flexibility of the home-made setup allowed for a combination of both techniques and thereby for a simultaneous rheological and three-dimensional structural analysis on a single particle level. Though, the limits of confocal microscopy are not reached by now. We show how hollow and optically anisotropic particles can be utilized to quantify contact forces and rotational motions for individual particles. In future such data can contribute to a better understanding of particle reorganization processes, such as the liquidation of colloidal gels and glasses under shear.
Resumo:
In this thesis, elemental research towards the implantation of a diamond-based molecular quantum computer is presented. The approach followed requires linear alignment of endohedral fullerenes on the diamond C(100) surface in the vicinity of subsurface NV-centers. From this, four fundamental experimental challenges arise: 1) The well-controlled deposition of endohedral fullerenes on a diamond surface. 2) The creation of NV-centers in diamond close to the surface. 3) Preparation and characterization of atomically-flat diamondsurfaces. 4) Assembly of linear chains of endohedral fullerenes. First steps to overcome all these challenges were taken in the framework of this thesis. Therefore, a so-called “pulse injection” technique was implemented and tested in a UHV chamber that was custom-designed for this and further tasks. Pulse injection in principle allows for the deposition of molecules from solution onto a substrate and can therefore be used to deposit molecular species that are not stable to sublimation under UHV conditions, such as the endohedral fullerenes needed for a quantum register. Regarding the targeted creation of NV-centers, FIB experiments were carried out in cooperation with the group of Prof. Schmidt-Kaler (AG Quantum, Physics Department, Johannes Gutenberg-Universität Mainz). As an entry into this challenging task, argon cations were implanted into (111) surface-oriented CaF2 crystals. The resulting implantation spots on the surface were imaged and characterized using AFM. In this context, general relations between the impact of the ions on the surface and their valency or kinetic energy, respectively, could be established. The main part of this thesis, however, is constituted by NCAFM studies on both, bare and hydrogen-terminated diamond C(100) surfaces. In cooperation with the group of Prof. Dujardin (Molecular Nanoscience Group, ISMO, Université de Paris XI), clean and atomically-flat diamond surfaces were prepared by exposure of the substrate to a microwave hydrogen plasma. Subsequently, both surface modifications were imaged in high resolution with NC-AFM. In the process, both hydrogen atoms in the unit cell of the hydrogenated surface were resolved individually, which was not achieved in previous STM studies of this surface. The NC-AFM images also reveal, for the first time, atomic-resolution contrast on the clean, insulating diamond surface and provide real-space experimental evidence for a (2×1) surface reconstruction. With regard to the quantum computing concept, high-resolution NC-AFM imaging was also used to study the adsorption and self-assembly potential of two different kinds of fullerenes (C60 and C60F48) on aforementioned diamond surfaces. In case of the hydrogenated surface, particular attention was paid to the influence of charge transfer doping on the fullerene-substrate interaction and the morphology emerging from self-assembly. Finally, self-assembled C60 islands on the hydrogen-terminated diamond surface were subject to active manipulation by an NC-AFM tip. Two different kinds of tip-induced island growth modes have been induced and were presented. In conclusion, the results obtained provide fundamental informations mandatory for the realization of a molecular quantum computer. In the process it was shown that NC-AFM is, under proper circumstances, a very capable tool for imaging diamond surfaces with highest resolution, surpassing even what has been achieved with STM up to now. Particular attention was paid to the influence of transfer doping on the morphology of fullerenes on the hydrogenated diamond surface, revealing new possibilities for tailoring the self-assembly of molecules that have a high electron affinity.
Resumo:
Die vorliegende Doktorarbeit befasst sich mit klassischen Vektor-Spingläsern eine Art von ungeordneten Magneten - auf verschiedenen Gittertypen. Da siernbedeutsam für eine experimentelle Realisierung sind, ist ein theoretisches Verständnis von Spinglas-Modellen mit wenigen Spinkomponenten und niedriger Gitterdimension von großer Bedeutung. Da sich dies jedoch als sehr schwierigrnerweist, sind neue, aussichtsreiche Ansätze nötig. Diese Arbeit betrachtet daher den Limesrnunendlich vieler Spindimensionen. Darin entstehen mehrere Vereinfachungen im Vergleichrnzu Modellen niedriger Spindimension, so dass für dieses bedeutsame Problem Eigenschaften sowohl bei Temperatur Null als auch bei endlichen Temperaturenrnüberwiegend mit numerischen Methoden ermittelt werden. Sowohl hyperkubische Gitter als auch ein vielseitiges 1d-Modell werden betrachtet. Letzteres erlaubt es, unterschiedliche Universalitätsklassen durch bloßes Abstimmen eines einzigen Parameters zu untersuchen. "Finite-size scaling''-Formen, kritische Exponenten, Quotienten kritischer Exponenten und andere kritische Größen werden nahegelegt und mit numerischen Ergebnissen verglichen. Eine detaillierte Beschreibung der Herleitungen aller numerisch ausgewerteter Gleichungen wird ebenso angegeben. Bei Temperatur Null wird eine gründliche Untersuchung der Grundzustände und Defektenergien gemacht. Eine Reihe interessanter Größen wird analysiert und insbesondere die untere kritische Dimension bestimmt. Bei endlicher Temperatur sind der Ordnungsparameter und die Spinglas-Suszeptibilität über die numerisch berechnete Korrelationsmatrix zugänglich. Das Spinglas-Modell im Limes unendlich vieler Spinkomponenten kann man als Ausgangspunkt zur Untersuchung der natürlicheren Modelle mit niedriger Spindimension betrachten. Wünschenswert wäre natürlich ein Modell, das die Vorteile des ersten mit den Eigenschaften des zweiten verbände. Daher wird in Modell mit Anisotropie vorgeschlagen und getestet, mit welchem versucht wird, dieses Ziel zu erreichen. Es wird auf reizvolle Wege hingewiesen, das Modell zu nutzen und eine tiefergehende Beschäftigung anzuregen. Zuletzt werden sogenannte "real-space" Renormierungsgruppenrechnungen sowohl analytisch als auch numerisch für endlich-dimensionale Vektor-Spingläser mit endlicher Anzahl von Spinkomponenten durchgeführt. Dies wird mit einer zuvor bestimmten neuen Migdal-Kadanoff Rekursionsrelation geschehen. Neben anderen Größen wird die untere kritische Dimension bestimmt.
Resumo:
In vielen Industriezweigen, zum Beispiel in der Automobilindustrie, werden Digitale Versuchsmodelle (Digital MockUps) eingesetzt, um die Konstruktion und die Funktion eines Produkts am virtuellen Prototypen zu überprüfen. Ein Anwendungsfall ist dabei die Überprüfung von Sicherheitsabständen einzelner Bauteile, die sogenannte Abstandsanalyse. Ingenieure ermitteln dabei für bestimmte Bauteile, ob diese in ihrer Ruhelage sowie während einer Bewegung einen vorgegeben Sicherheitsabstand zu den umgebenden Bauteilen einhalten. Unterschreiten Bauteile den Sicherheitsabstand, so muss deren Form oder Lage verändert werden. Dazu ist es wichtig, die Bereiche der Bauteile, welche den Sicherhabstand verletzen, genau zu kennen. rnrnIn dieser Arbeit präsentieren wir eine Lösung zur Echtzeitberechnung aller den Sicherheitsabstand unterschreitenden Bereiche zwischen zwei geometrischen Objekten. Die Objekte sind dabei jeweils als Menge von Primitiven (z.B. Dreiecken) gegeben. Für jeden Zeitpunkt, in dem eine Transformation auf eines der Objekte angewendet wird, berechnen wir die Menge aller den Sicherheitsabstand unterschreitenden Primitive und bezeichnen diese als die Menge aller toleranzverletzenden Primitive. Wir präsentieren in dieser Arbeit eine ganzheitliche Lösung, welche sich in die folgenden drei großen Themengebiete unterteilen lässt.rnrnIm ersten Teil dieser Arbeit untersuchen wir Algorithmen, die für zwei Dreiecke überprüfen, ob diese toleranzverletzend sind. Hierfür präsentieren wir verschiedene Ansätze für Dreiecks-Dreiecks Toleranztests und zeigen, dass spezielle Toleranztests deutlich performanter sind als bisher verwendete Abstandsberechnungen. Im Fokus unserer Arbeit steht dabei die Entwicklung eines neuartigen Toleranztests, welcher im Dualraum arbeitet. In all unseren Benchmarks zur Berechnung aller toleranzverletzenden Primitive beweist sich unser Ansatz im dualen Raum immer als der Performanteste.rnrnDer zweite Teil dieser Arbeit befasst sich mit Datenstrukturen und Algorithmen zur Echtzeitberechnung aller toleranzverletzenden Primitive zwischen zwei geometrischen Objekten. Wir entwickeln eine kombinierte Datenstruktur, die sich aus einer flachen hierarchischen Datenstruktur und mehreren Uniform Grids zusammensetzt. Um effiziente Laufzeiten zu gewährleisten ist es vor allem wichtig, den geforderten Sicherheitsabstand sinnvoll im Design der Datenstrukturen und der Anfragealgorithmen zu beachten. Wir präsentieren hierzu Lösungen, die die Menge der zu testenden Paare von Primitiven schnell bestimmen. Darüber hinaus entwickeln wir Strategien, wie Primitive als toleranzverletzend erkannt werden können, ohne einen aufwändigen Primitiv-Primitiv Toleranztest zu berechnen. In unseren Benchmarks zeigen wir, dass wir mit unseren Lösungen in der Lage sind, in Echtzeit alle toleranzverletzenden Primitive zwischen zwei komplexen geometrischen Objekten, bestehend aus jeweils vielen hunderttausend Primitiven, zu berechnen. rnrnIm dritten Teil präsentieren wir eine neuartige, speicheroptimierte Datenstruktur zur Verwaltung der Zellinhalte der zuvor verwendeten Uniform Grids. Wir bezeichnen diese Datenstruktur als Shrubs. Bisherige Ansätze zur Speicheroptimierung von Uniform Grids beziehen sich vor allem auf Hashing Methoden. Diese reduzieren aber nicht den Speicherverbrauch der Zellinhalte. In unserem Anwendungsfall haben benachbarte Zellen oft ähnliche Inhalte. Unser Ansatz ist in der Lage, den Speicherbedarf der Zellinhalte eines Uniform Grids, basierend auf den redundanten Zellinhalten, verlustlos auf ein fünftel der bisherigen Größe zu komprimieren und zur Laufzeit zu dekomprimieren.rnrnAbschießend zeigen wir, wie unsere Lösung zur Berechnung aller toleranzverletzenden Primitive Anwendung in der Praxis finden kann. Neben der reinen Abstandsanalyse zeigen wir Anwendungen für verschiedene Problemstellungen der Pfadplanung.