2 resultados para QUASI-PERPENDICULAR SHOCKS

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wurde die zeitaufgelöste Photoemissions Elektronenmikroskopie (TR-PEEM) für die in-situ Untersuchung ultraschneller dynamischer Prozesse in dünnen mikrostrukturierten magnetischen Schichten während eines rasch verändernden externen Magnetfelds entwickelt. Das Experiment basiert auf der Nutzung des XMCD-Kontrasts (X-ray magnetic circular dichroism) mit Hilfe des zirkularpolarisierten Lichts von Synchrotronstrahlungsquellen (Elektronenspeicherringen BESSY II (Berlin) und ESRF (Grenoble)) für die dynamische Darstellung der magnetischen Domänen während ultraschneller Magnetisierungsvorgänge. Die hier entwickelte Methode wurde als erfolgreiche Kombination aus einer hohen Orts- und Zeitauflösung (weniger als 55 nm bzw. 15 ps) realisiert. Mit der hier beschriebenen Methode konnte nachgewiesen werden, dass die Magnetisierungsdynamik in großen Permalloy-Mikrostrukturen (40 µm x 80 µm und 20 µm x 80 µm, 40 nm dick) durch inkohärente Drehung der Magnetisierung und mit der Bildung von zeitlich abhängigen Übergangsdomänen einher geht, die den Ummagnetisierungsvorgang blockieren. Es wurden neue markante Differenzen zwischen der magnetischen Response einer vorgegebenen Dünnfilm-Mikrostruktur auf ein gepulstes externes Magnetfeld im Vergleich zu dem quasi-statischen Fall gefunden. Dies betrifft die Erscheinung von transienten raumzeitlichen Domänenmustern und besonderen Detailstrukturen in diesen Mustern, welche im quasi-statischen Fall nicht auftreten. Es wurden Beispiele solcher Domänenmuster in Permalloy-Mikrostrukturen verschiedener Formen und Größen untersucht und diskutiert. Insbesondere wurde die schnelle Verbreiterung von Domänenwänden infolge des präzessionalen Magnetisierungsvorgangs, die Ausbildung von transienten Domänenwänden und transienten Vortizes sowie die Erscheinung einer gestreiften Domänenphase aufgrund der inkohärenten Drehung der Magnetisierung diskutiert. Ferner wurde die Methode für die Untersuchung von stehenden Spinwellen auf ultradünnen (16 µm x 32 µm groß und 10 nm dick) Permalloy-Mikrostrukturen herangezogen. In einer zum periodischen Anregungsfeld senkrecht orientierten rechteckigen Mikrostruktur wurde ein induziertes magnetisches Moment gefunden. Dieses Phänomen wurde als „selbstfangende“ Spinwellenmode interpretiert. Es wurde gezeigt, dass sich eine erzwungene Normalmode durch Verschiebung einer 180°-Néelwand stabilisiert. Wird das System knapp unterhalb seiner Resonanzfrequenz angeregt, passt sich die Magnetisierungsverteilung derart an, dass ein möglichst großer Teil der durch das Anregungsfeld eingebrachten Energie im System verbleibt. Über einem bestimmten Grenzwert verursacht die Spinwellenmode nahe der Resonanzfrequenz eine effektive Kraft senkrecht zur 180°-Néel-Wand. Diese entsteht im Zentrum der Mikrostruktur und wird durch die streufeldinduzierte Kraft kompensiert. Als zusätzliche Möglichkeit wurden die Streufelder von magnetischen Mikrostrukturen während der dynamischen Prozesse quantitativ bestimmt und das genaue zeitliche Profil des Streufelds untersucht. Es wurde gezeigt, dass das zeitaufgelöste Photoemissions Elektronenmikroskop als ultraschnelles oberflächensensitives Magnetometer eingesetzt werden kann.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer-Simulationen von Kolloidalen Fluiden in Beschränkten Geometrien Kolloidale Suspensionen, die einen Phasenübergang aufweisen, zeigen eine Vielfalt an interessanten Effekten, sobald sie auf eine bestimmte Geometrie beschränkt werden, wie zum Beispiel auf zylindrische Poren, sphärische Hohlräume oder auf einen Spalt mit ebenen Wänden. Der Einfluss dieser verschiedenen Geometrietypen sowohl auf das Phasenverhalten als auch auf die Dynamik von Kolloid-Polymer-Mischungen wird mit Hilfe von Computer-Simulationen unter Verwendung des Asakura-Oosawa- Modells, für welches auf Grund der “Depletion”-Kräfte ein Phasenübergang existiert, untersucht. Im Fall von zylindrischen Poren sieht man ein interessantes Phasenverhalten, welches vom eindimensionalen Charakter des Systems hervorgerufen wird. In einer kurzen Pore findet man im Bereich des Phasendiagramms, in dem das System typischerweise entmischt, entweder eine polymerreiche oder eine kolloidreiche Phase vor. Sobald aber die Länge der zylindrischen Pore die typische Korrelationslänge entlang der Zylinderachse überschreitet, bilden sich mehrere quasi-eindimensionale Bereiche der polymerreichen und der kolloidreichen Phase, welche von nun an koexistieren. Diese Untersuchungen helfen das Verhalten von Adsorptionshysteresekurven in entsprechenden Experimenten zu erklären. Wenn das Kolloid-Polymer-Modellsystem auf einen sphärischen Hohlraum eingeschränkt wird, verschiebt sich der Punkt des Phasenübergangs von der polymerreichen zur kolloidreichen Phase. Es wird gezeigt, dass diese Verschiebung direkt von den Benetzungseigenschaften des Systems abhängt, was die Beobachtung von zwei verschiedenen Morphologien bei Phasenkoexistenz ermöglicht – Schalenstrukturen und Strukturen des Janustyps. Im Rahmen der Untersuchung von heterogener Keimbildung von Kristallen innerhalb einer Flüssigkeit wird eine neue Simulationsmethode zur Berechnung von Freien Energien der Grenzfläche zwischen Kristall- bzw. Flüssigkeitsphase undWand präsentiert. Die Resultate für ein System von harten Kugeln und ein System einer Kolloid- Polymer-Mischung werden anschließend zur Bestimmung von Kontaktwinkeln von Kristallkeimen an Wänden verwendet. Die Dynamik der Phasenseparation eines quasi-zweidimensionalen Systems, welche sich nach einem Quench des Systems aus dem homogenen Zustand in den entmischten Zustand ausbildet, wird mit Hilfe von einer mesoskaligen Simulationsmethode (“Multi Particle Collision Dynamics”) untersucht, die sich für eine detaillierte Untersuchung des Einflusses der hydrodynamischen Wechselwirkung eignet. Die Exponenten universeller Potenzgesetze, die das Wachstum der mittleren Domänengröße beschreiben, welche für rein zwei- bzw. dreidimensionale Systeme bekannt sind, können für bestimmte Parameterbereiche nachgewiesen werden. Die unterschiedliche Dynamik senkrecht bzw. parallel zu den Wänden sowie der Einfluss der Randbedingungen für das Lösungsmittel werden untersucht. Es wird gezeigt, dass die daraus resultierende Abschirmung der hydrodynamischen Wechselwirkungsreichweite starke Auswirkungen auf das Wachstum der mittleren Domänengröße hat.