8 resultados para Preparation process
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In this study a novel method MicroJet reactor technology was developed to enable the custom preparation of nanoparticles. rnDanazol/HPMCP HP50 and Gliclazide/Eudragit S100 nanoparticles were used as model systems for the investigation of effects of process parameters and microjet reactor setup on the nanoparticle properties during the microjet reactor construction. rnFollowing the feasibility study of the microjet reactor system, three different nanoparticle formulations were prepared using fenofibrate as model drug. Fenofibrate nanoparticles stabilized with poloxamer 407 (FN), fenofibrate nanoparticles in hydroxypropyl methyl cellulose phthalate (HPMCP) matrix (FHN) and fenofibrate nanoparticles in HPMCP and chitosan matrix (FHCN) were prepared under controlled precipitation using MicroJet reactor technology. Particle sizes of all the nanoparticle formulations were adjusted to 200-250 nm. rnThe changes in the experimental parameters altered the system thermodynamics resulting in the production of nanoparticles between 20-1000 nm (PDI<0.2) with high drug loading efficiencies (96.5% in 20:1 polymer:drug ratio).rnDrug releases from all nanoparticle formulations were fast and complete after 15 minutes both in FaSSIF and FeSSIF medium whereas in mucodhesiveness tests, only FHCN formulation was found to be mucoadhesive. Results of the Caco-2 studies revealed that % dose absorbed values were significantly higher (p<0.01) for FHCN in both cases where FaSSIF and FeSSIF were used as transport buffer.rn
Resumo:
Dünne Polymerfilme besitzen einen weiten Anwendungsbereich in vielen High-Tech Applikationen. All diese Anwendungen erfordern ein bestimmtes Anwendungsprofil des dünnen Films. Diese Anforderungen umschließen sowohl die physikalischen Eigenschaften des Films als auch seine Struktur. Um sie zu realisieren, werden oftmals Mischungsfilme aus verschiedenen Polymeren verwendet. Diese neigen jedoch in vielen Fällen zur bereits während der Präparation zu Phasenseparation.Vor diesem Hintergrund wurde untersucht welchen Einfluss die Verträglichkeit der gemischten Polymere auf die Strukturbildung des dünnen Films ausüben. Als Modellsystem hierfür dienten Mischungen statistischer Poly-styrol-stat-para brom-styrol Copolymere.Die Oberflächenstrukturen, die sich währen der Präparation der Mischungsfilme einstellten, wurden mit Rasterkraftmikroskopie untersucht. wobei die Topologie einer statistischen Analyse unterzogen wurde. Zum einen wurde hierzu die spektrale Leistungsdichte der Oberflächenkontour zum anderen die zugehörigen Minkowski-Funktionale berechnet.Neben Oberflächenstrukturen bilden sich während der Präparation auch Entmischungsstrukturen im inneren des Filmes. Zur Charakterisierung dieser Strukturen wurden die Filme durch Streuung unter streifendem Einfall untersucht. Durch eine modellfreie Interpretation der Streuexperimente gelang der Nachweis der inneren StrukturenFür nur schwach unverträglich Filme konnte auf Basis der Streuexperimente eine Replikation der Oberflächenstruktur des Substrates auf die Filmoberflächen nachgewiesen werden. Diese Replikation wurde für verschieden raue Substrate und bezueglich der Kinetik ihrer Abnahme beim Quellen der Filme untersucht.
Resumo:
Die Herstellung von Polymer-Solarzellen aus wässriger Phase stellt eine attraktive Alternative zu der konventionellen lösemittelbasierten Formulierung dar. Die Vorteile der aus wässriger Lösung hergestellten Solarzellen liegen besonders in dem umweltschonenden Herstellungsprozess und in der Möglichkeit, druckbare optoelektronische Bauteile zu generieren. Die Prozessierbarkeit von hydrophoben Halbleitern im wässrigen Milieu wird durch die Dispergierung der Materialien, in Form von Nanopartikeln, erreicht. Der Transfer der Halbleiter in eine Dispersion erfolgt über die Lösemittelverdampfungsmethode. Die Idee der Verwendung von partikelbasierte Solarzellen wurde bereits umgesetzt, allerdings blieben eine genaue Charakterisierung der Partikel sowie ein umfassendes Verständnis des gesamten Fabrikationsvorgangs aus. Deshalb besteht das Ziel dieser Arbeit darin, einen detaillierten Einblick in den Herstellungsprozess von partikelbasierten Solarzellen zu erlangen, mögliche Schwächen aufzudecken, diese zu beseitigen, um so zukünftige Anwendungen zu verbessern. Zur Herstellung von Solarzellen aus wässrigen Dispersionen wurde Poly(3-hexylthiophen-2,5-diyl)/[6,6]-Phenyl-C61-Buttersäure-Methylester (P3HT/PCBM) als Donor/Akzeptor-System verwendet. Die Kernpunkte der Untersuchungen richteten sich zum einen die auf Partikelmorphologie und zum anderen auf die Generierung einer geeigneten Partikelschicht. Beide Parameter haben Auswirkungen auf die Solarzelleneffizienz. Die Morphologie wurde sowohl spektroskopisch über Photolumineszenz-Messungen, als auch visuell mittels Elektronenmikroskopie ermittelt. Auf diese Weise konnte die Partikelmorphologie vollständig aufgeklärt werden, wobei Parallelen zu der Struktur von lösemittelbasierten Solarzellen gefunden wurden. Zudem wurde eine Abhängigkeit der Morphologie von der Präparationstemperatur beobachtet, was eine einfache Steuerung der Partikelstruktur ermöglicht. Im Zuge der Partikelschichtausbildung wurden direkte sowie grenzflächenvermittelnde Beschichtungsmethoden herangezogen. Von diesen Techniken hatte sich aber nur die Rotationsbeschichtung als brauchbare Methode erwiesen, Partikel aus der Dispersion in einen homogenen Film zu überführen. Des Weiteren stand die Aufarbeitung der Partikelschicht durch Ethanol-Waschung und thermische Behandlung im Fokus dieser Arbeit. Beide Maßnahmen wirkten sich positiv auf die Effizienz der Solarzellen aus und trugen entscheidend zu einer Verbesserung der Zellen bei. Insgesamt liefern die gewonnen Erkenntnisse einen detaillierten Überblick über die Herausforderungen, welche bei dem Einsatz von wasserbasierten Dispersionen auftreten. Die Anforderungen partikelbasierter Solarzellen konnten offengelegt werden, dadurch gelang die Herstellung einer Solarzelle mit einer Effizienz von 0.53%. Dieses Ergebnis stellt jedoch noch nicht das Optimum dar und lässt noch Möglichkeiten für Verbesserungen offen.
Resumo:
Primitive kohlige Chondrite sind Meteorite, die seit ihrer Entstehung im frühen Sonnensystem kaum verändert wurden und dadurch einen Einblick in Prozesse geben, die zur Bildung und Veränderung der ersten festen Materie führten. Solche Prozesse können anhand von Bruchstücken dieser Meteorite detailliert im Labor studiert werden, sodass Rückschlüsse auf die Entwicklung unseres Sonnensystems im frühen Stadium getroffen werden können. Ca-, Al-reiche Einschlüsse (CAIs) aus chondritischen Meteoriten sind die ersten Festkörper des Sonnensystems und enthalten viele refraktäre Metallnuggets (RMNs), welche hauptsächlich aus den Elementen Os, Ir, Ru, Mo und Pt bestehen. Nach weit verbreiteter Ansicht sind diese Nuggets wahrscheinlich im Gleichgewicht mit dem solaren Nebel kondensiert, bereits früher oder gleichzeitig mit Oxiden und Silikaten. Die exakten Mechanismen, die zu ihren heute beobachteten Eigenschaften führten, sind allerdings unklar. Um frühere Arbeiten fortzuführen, wurde eine hohe Anzahl RMNs in vier unterschiedlichen Typen von Meteoriten detailliert studiert, darunter solche aus dem nahezu unveränderten Acfer 094, Allende (CV3ox), Leoville (CV3red) und Murchison (CM2). Die RMNs wurden in-situ, assoziiert mit ihren Wirtsmineralen und auch in Säurerückständen gefunden, deren Präparationsprozedur in dieser Arbeit speziell für RMNs durch eine zusätzliche Dichtetrennung verbessert wurde.rnDie Ergebnisse decken eine Reihe von Ungereimtheiten zwischen den beobachteten RMN-Eigenschaften und einer Kondensationsherkunft auf, sowohl für Kondensation in solarer Umgebung, als auch für Kondensation aus Material von Supernovae oder roten Riesen, für die die Kondensationssequenzen refraktärer Metalle speziell für diesen Vergleich berechnet wurden. Stattdessen wurden in dieser Arbeit neue Einblicke in die RMN-Entstehung und die Entwicklung der ersten Festkörper (CAIs) durch eine Kombination aus experimentellen, isotopischen, strukturellen und petrologischen Studien an RMNs gewonnen. Viele der beobachteten Eigenschaften sind mit Ausfällung der RMN aus einer CAI-Schmelze vereinbar. Ein solches Szenario wird durch entsprechende Untersuchungen an synthetisch hergestellten, mit refraktären Metallen im Gleichgewicht stehenden CAI-Schmelzen bestätigt. Es folgt aus den Ergebnissen, dass die Mehrzahl der RMNs isotopisch solar ist und alle untersuchten RMNs innerhalb von CAIs bei rascher Abkühlung (um bis zu 1000 °C/40 sek.) einer CAI-Schmelze gebildet wurden. rn
Resumo:
Radiometals play an important role in nuclear medicine as involved in diagnostic or therapeutic agents. In the present work the radiochemical aspects of production and processing of very promising radiometals of the third group of the periodic table, namely radiogallium and radiolanthanides are investigated. The 68Ge/68Ga generator (68Ge, T½ = 270.8 d) provides a cyclotron-independent source of positron-emitting 68Ga (T½ = 68 min), which can be used for coordinative labelling. However, for labelling of biomolecules via bifunctional chelators, particularly if legal aspects of production of radiopharmaceuticals are considered, 68Ga(III) as eluted initially needs to be pre-concentrated and purified. The first experimental chapter describes a system for simple and efficient handling of the 68Ge/68Ga generator eluates with a cation-exchange micro-chromatography column as the main component. Chemical purification and volume concentration of 68Ga(III) are carried out in hydrochloric acid – acetone media. Finally, generator produced 68Ga(III) is obtained with an excellent radiochemical and chemical purity in a minimised volume in a form applicable directly for the synthesis of 68Ga-labelled radiopharmaceuticals. For labelling with 68Ga(III), somatostatin analogue DOTA-octreotides (DOTATOC, DOTANOC) are used. 68Ga-DOTATOC and 68Ga-DOTANOC were successfully used to diagnose human somatostatin receptor-expressing tumours with PET/CT. Additionally, the proposed method was adapted for purification and medical utilisation of the cyclotron produced SPECT gallium radionuclide 67Ga(III). Second experimental chapter discusses a diagnostic radiolanthanide 140Nd, produced by irradiation of macro amounts of natural CeO2 and Pr2O3 in natCe(3He,xn)140Nd and 141Pr(p,2n)140Nd nuclear reactions, respectively. With this produced and processed 140Nd an efficient 140Nd/140Pr radionuclide generator system has been developed and evaluated. The principle of radiochemical separation of the mother and daughter radiolanthanides is based on physical-chemical transitions (hot-atom effects) of 140Pr following the electron capture process of 140Nd. The mother radionuclide 140Nd(III) is quantitatively absorbed on a solid phase matrix in the chemical form of 140Nd-DOTA-conjugated complexes, while daughter nuclide 140Pr is generated in an ionic species. With a very high elution yield and satisfactory chemical and radiolytical stability the system could able to provide the short-lived positron-emitting radiolanthanide 140Pr for PET investigations. In the third experimental chapter, analogously to physical-chemical transitions after the radioactive decay of 140Nd in 140Pr-DOTA, the rapture of the chemical bond between a radiolanthanide and the DOTA ligand, after the thermal neutron capture reaction (Szilard-Chalmers effect) was evaluated for production of the relevant radiolanthanides with high specific activity at TRIGA II Mainz nuclear reactor. The physical-chemical model was developed and first quantitative data are presented. As an example, 166Ho could be produced with a specific activity higher than its limiting value for TRIGA II Mainz, namely about 2 GBq/mg versus 0.9 GBq/mg. While free 166Ho(III) is produced in situ, it is not forming a 166Ho-DOTA complex and therefore can be separated from the inactive 165Ho-DOTA material. The analysis of the experimental data shows that radionuclides with half-life T½ < 64 h can be produced on TRIGA II Mainz nuclear reactor, with specific activity higher than any available at irradiation of simple targets e.g. oxides.
Resumo:
In this work a generally applicable method for the preparation of mucoadhesive micropellets of 250 to 600µm diameter is presented using rotor processing without the use of electrolytes. The mucoadhesive micropellets were developed to combine the advantages of mucoadhesion and microparticles. It was possible to produce mucoadhesive micropellets based on different mucoadhesive polymers Na-CMC, Na-alginate and chitosan. These micropellets are characterized by a lower friability (6 to 17%) when compared to industrial produced cellulose pellets (Cellets®) (41.5%). They show great tapped density and can be manufactured at high yields. The most influencing variables of the process are the water content at the of the end spraying period, determined by the liquid binder amount, the spraying rate, the inlet air temperature, the airflow and the humidity of the inlet air and the addition of the liquid binder, determined by the spraying rate, the rotor speed and the type of rotor disc. In a subsequent step a fluidized bed coating process was developed. It was possible to manifest a stable process in the Hüttlin Mycrolab® in contrast to the Mini-Glatt® apparatus. To reach enteric resistance, a 70% coating for Na-CMC micropellets, an 85% for chitosan micropellets and a 140% for Na-alginate micropellets, based on the amount of the starting micropellets, was necessary. Comparative dissolution experiments of the mucoadhesive micropellets were performed using the paddle apparatus with and without a sieve inlay, the basket apparatus, the reciprocating cylinder and flow-through cell. The paddle apparatus and the modified flow-through cell method turned out to be successful methods for the dissolution of mucoadhesive micropellets. All dissolution profiles showed an initial burst release followed by a slow release due to diffusion control. Depending on the method, the dissolution profiles changed from immediate release to slow release. The dissolution rate in the paddle apparatus was mainly influenced by the agitation rate whereas the flow-through cell pattern was mainly influenced by the particle size. Also, the logP and the HLB values of different emulsifiers were correlated to transfer HLB values of excipients into logP values and logP values of API´s into HLB values. These experiments did not show promising results. Finally, it was shown that manufacture of mucoadhesive micropellets is successful resulting in product being characterized by enteric resistency combined with high yields and convincing morphology.
Resumo:
Die Elektronen in wasserstoff- und lithium-ähnlichen schweren Ionen sind den extrem starken elektrischen und magnetischen Feldern in der Umgebung des Kerns ausgesetzt. Die Laserspektroskopie der Hyperfeinaufspaltung im Grundzustand des Ions erlaubt daher einen sensitiven Test der Quantenelektrodynamik in starken Feldern insbesondere im magnetischen Sektor. Frühere Messungen an wasserstoffähnlichen Systemen die an einer Elektronenstrahl-Ionenfalle (EBIT) und am Experimentierspeicherring (ESR) der GSI Darmstadt durchgeführt wurden, waren in ihrer Genauigkeit durch zu geringe Statistik, einer starken Dopplerverbreiterung und der großen Unsicherheit in der Ionenenergie limitiert. Das ganze Potential des QED-Tests kann nur dann ausgeschöpft werden, wenn es gelingt sowohl wasserstoff- als auch lithium-ähnliche schwere Ionen mit einer um 2-3 Größenordnung gesteigerten Genauigkeit zu spektroskopieren. Um dies zu erreichen, wird gegenwärtig das neue Penningfallensystem SPECTRAP an der GSI aufgebaut und in Betrieb genommen. Es ist speziell für die Laserspektroskopie an gespeicherten hochgeladenen Ionen optimiert und wird in Zukunft von HITRAP mit nierderenergetischen hochgeladenen Ionen versorgt werden.rnrnSPECTRAP ist eine zylindrische Penningfalle mit axialem Zugang für die Injektion von Ionen und die Einkopplung eines Laserstrahls sowie einem radialen optischen Zugang für die Detektion der Fluoreszenz. Um letzteres zu realisieren ist der supraleitende Magnet als Helmholtz-Spulenpaar ausgelegt. Um die gewünschte Genauigkeit bei der Laserspektroskopie zu erreichen, muss ein effizienter und schneller Kühlprozess für die injizierten hochegeladenen Ionen realisiert werden. Dies kann mittels sympathetischer Kühlung in einer lasergekühlten Wolke leichter Ionen realisiert werden. Im Rahmen dieser Arbeit wurde ein Lasersystem und eine Ionenquelle für die Produktion einer solchen 24Mg+ Ionenwolke aufgebaut und erfolgreich an SPECTRAP in Betrieb genommen. Dazu wurde ein Festkörperlasersystem für die Erzeugung von Licht bei 279.6 nm entworfen und aufgebaut. Es besteht aus einem Faserlaser bei 1118 nm der in zwei aufeinanderfolgenden Frequenzverdopplungsstufen frequenzvervierfacht wird. Die Verdopplerstufen sind als aktiv stabilisierte Resonantoren mit nichtlinearen Kristallen ausgelegt. Das Lasersystem liefert unter optimalen Bedingeungen bis zu 15 mW bei der ultravioletten Wellenlänge und erwies sich während der Teststrahlzeiten an SPECTRAP als ausgesprochen zuverlässig. Desweiteren wurde eine Ionequelle für die gepulste Injektion von Mg+ Ionen in die SPECTRAP Falle entwickelt. Diese basiert auf der Elektronenstoßionisation eines thermischen Mg-Atomstrahls und liefert in der gepulsten Extraktion Ionenbündel mit einer kleinen Impuls- und Energieverteilung. Unter Nutzung des Lasersystems konnten damit an SPECTRAP erstmals Ionenwolken mit bis zu 2600 lasergekühlten Mg Ionen erzeugt werden. Der Nachweis erfolgte sowohl mittels Fluoreszenz als auch mit der FFT-ICR Technik. Aus der Analyse des Fluoreszenz-Linienprofils lässt sich sowohl die Sensitivität auf einzelne gespeicherte Ionen als auch eine erreichte Endtemperatur in der Größenordnung von ≈ 100 mK nach wenigen Sekunden Kühlzeit belegen.
Resumo:
In this thesis, different complex colloids were prepared by the process of solvent evaporation from emulsion droplets (SEED). The term “complex” is used to include both an addressable functionality as well as the heterogeneous nature of the colloids.Firstly, as the SEED process was used throughout the thesis, its mechanism especially in regard to coalescence was investigated,. A wide variety of different techniques was employed to study the coalescence of nanodroplets during the evaporation of the solvent. Techniques such as DLS or FCS turned out not to be suitable methods to determine droplet coalescence because of their dependence on dilution. Thus, other methods were developed. TEM measurements were conducted on mixed polymeric emulsions with the results pointing to an absence of coalescence. However, these results were not quantifiable. FRET measurements on mixed polymeric emulsions also indicated an absence of coalescence. Again the results were not quantifiable. The amount of coalescence taking place was then quantified by the application of DC-FCCS. This method also allowed for measuring coalescence in other processes such as the miniemulsion polymerization or the polycondensation reaction on the interface of the droplets. By simulations it was shown that coalescence is not responsible for the usually observed broad size distribution of the produced particles. Therefore, the process itself, especially the emulsification step, needs to be improved to generate monodisperse colloids.rnThe Janus morphology is probably the best known among the different complex morphologies of nanoparticles. With the help of functional polymers, it was possible to marry click-chemistry to Janus particles. A large library of functional polymers was prepared by copolymerization and subsequent post-functionalization or by ATRP. The polymers were then used to generate Janus particles by the SEED process. Both dually functionalized Janus particles and particles with one functionalized face could be obtained. The latter were used for the quantification of functional groups on the surface of the Janus particles. For this, clickable fluorescent dyes were synthesized. The degree of functionality of the polymers was found to be closely mirrored in the degree of functionality of the surface. Thus, the marriage of click-chemistry to Janus particles was successful.Another complex morphology besides Janus particles are nanocapsules. Stimulus-responsive nanocapsules that show triggered release are a highly demanding and interesting system, as nanocapsules have promising applications in drug delivery and in self-healing materials. To achieve heterogeneity in the polymer shell, the stimulus-responsive block copolymer PVFc-b-PMMA was employed for the preparation of the capsules. The phase separation of the two blocks in the shell of the capsules led to a patchy morphology. These patches could then be oxidized resulting in morphology changes. In addition, swelling occurred because of the hydrophobic to hydrophilic transition of the patches induced by the oxidation. Due to the swelling, an encapsulated payload could diffuse out of the capsules, hence release was achieved.The concept of using block copolymers responsive to one stimulus for the preparation of stimulus-responsive capsules was extended to block copolymers responsive to more than one stimulus. Here, a block copolymer responsive to oxidation and a pH change as well as a block copolymer responsive to a pH change and temperature were studied in detail. The release from the nanocapsules could be regulated by tuning the different stimuli. In addition, by encapsulating stimuli-responsive payloads it was possible to selectively release a payload upon one stimulus but not upon the other one.In conclusion, the approaches taken in the course of this thesis demonstrate the broad applicability and usefulness of the SEED process to generate complex colloids. In addition, the experimental techniques established such as DC-FCCS will provide further insight into other research areas as well.