11 resultados para Post-translational Processing

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Die Lichtsammelantenne des PSI (LHCI) ist hinsichtlich ihrer Protein- und Pigmentzusammensetzung weniger gut untersucht als die des PSII. Im Rahmen dieser Arbeit wurde deshalb zunächst die Isolation von nativen LHCI-Subkomplexen optimiert und deren Pigmentzusammensetzung untersucht. Zusätzlich wurde die Pigmentbindung analysiert sowie das Pigment/Protein-Verhältnis bestimmt. Die Analyse der Proteinzusammensetzung des LHCI erfolgte mittels einer Kombination aus ein- oder zweidimensionaler Gelelektrophorese mit Westernblotanalysen mit Lhca-Protein-spezifischen Antikörpern und massenspektrometrischen Untersuchungen. Dabei stellte sich heraus, dass der LHCI mehr Proteine bzw. Proteinisoformen enthält als bisher vermutet. So gelang durch die massenspektrometrischen Untersuchungen die Identifizierung zweier bisher noch nicht nachgewiesener Lhca-Proteine. Bei diesen handelt es sich um eine Isoform des Lhca4 und ein zusätzliches Lhca-Protein, das Tomaten-Homolog des Lhca5 von Arabidopsis thaliana. Außerdem wurden in 1D-Gelen Isoformen von Lhca-Proteinen mit unterschiedlichem elektrophoretischen Verhalten beobachtet. In 2D-Gelen trat zusätzlich eine große Anzahl an Isoformen mit unterschiedlichen isoelektrischen Punkten auf. Es ist zu vermuten, dass zumindest ein Teil dieser Isoformen physiologischen Ursprungs ist, und z.B. durch differentielle Prozessierung oder posttranslationale Modifikationen verursacht wird, wenn auch die Spotvielfalt in 2D-Gelen wohl eher auf die Probenaufbereitung zurückzuführen ist. Mittels in vitro-Rekonstitution mit anschließenden biochemischen Untersuchungen und Fluoreszenzmessungen wurde nachgewiesen, dass Lhca5 ein funktioneller LHC mit spezifischen Pigmentbindungseigenschaften ist. Außerdem zeigten in vitro-Dimerisierungsexperimente eine Interaktion zwischen Lhca1 und Lhca5, wodurch dessen Zugehörigkeit zur Antenne des PSI gestützt wird. In vitro-Dimerisierungsexperimente mit Lhca2 und Lhca3 führten dagegen nicht zur Bildung von Dimeren. Dies zeigt, dass die Interaktion in potentiellen Homo- oder Heterodimeren aus Lhca2 und/oder Lhca3 schwächer ist als die zwischen Lhca1 und Lhca4 oder Lhca5. Die beobachtete Proteinheterogenität deutet daraufhin, dass die Antenne des PSI eine komplexere Zusammensetzung hat als bisher angenommen. Für die Integration „neuer“ LHC in den PSI-LHCI-Holokomplex werden zwei Modelle vorgeschlagen: geht man von einer festen Anzahl von LHCI-Monomeren aus, so kann sie durch den Austausch einzelner LHC-Monomere erreicht werden. Als zweites Szenario ist die Bindung zusätzlicher LHC vorstellbar, die entweder indirekt über bereits vorhandene LHC oder direkt über PSI-Kernuntereinheiten mit dem PSI interagieren. In Hinblick auf die Pigmentbindung der nativen LHCI-Subfraktionen konnte gezeigt werden, dass sie Pigmente in einer spezifischen Stöchiometrie und Anzahl binden, und sich vom LHCIIb vor allem durch eine verstärkte Bindung von Chlorophyll a, eine geringere Anzahl von Carotinoiden und die Bindung von ß-Carotin an Stelle von Neoxanthin unterscheiden. Der Vergleich von nativem LHCI mit rekonstituierten Lhca-Proteinen ergab, dass Lhca-Proteine Pigmente in einer spezifischen Stöchiometrie binden, und dass sie Carotinoidbindungsstellen mit flexiblen Bindungseigenschaften besitzen. Auch über die Umwandlung des an die einzelnen Lhca-Proteine gebundenen Violaxanthins (Vio) im Xanthophyllzyklus war nur wenig bekannt. Deshalb wurden mit Hilfe eines in vitro-Deepoxidationssystems sowohl native als auch rekonstituierte LHCI hinsichtlich ihrer Deepoxidationseigenschaften untersucht und der Deepoxidationsgrad von in vivo deepoxidierten Pigment-Protein-Komplexen bestimmt. Aus den Deepoxidationsexperimenten konnte abgeleitet werden, dass in den verschiedenen Lhca-Proteinen unterschiedliche Carotinoidbindungsstellen besetzt sind. Außerdem bestätigten diese Experimente, dass der Xanthophyllzyklus auch im LHCI auftritt, wobei jedoch ein niedrigerer Deepoxidationsgrad erreicht wird als bei LHCII. Dies konnte durch in vitro-Deepoxidationsversuchen auf eine geringere Deepoxidierbarkeit des von Lhca1 und Lhca2 gebundenen Vio zurückgeführt werden. Damit scheint Vio in diesen Lhca-Proteinen eher eine strukturelle Rolle zu übernehmen. Eine photoprotektive Funktion von Zeaxanthin im PSI wäre folglich auf Lhca3 und Lhca4 beschränkt. Damit enthält jede LHCI-Subfraktion ein LHC-Monomer mit langwelliger Fluoreszenz, das möglicherweise am Lichtschutz beteiligt ist. Insgesamt zeigten die Untersuchungen der Pigmentbindung, der Deepoxidierung und der Fluoreszenzeigenschaften, dass sich die verschiedenen Lhca-Proteine in einem oder mehreren dieser Parameter unterscheiden. Dies lässt vermuten, dass schon durch leichte Veränderungen in der Proteinzusammensetzung des LHCI eine Anpassung an unterschiedliche Licht-verhältnisse erreicht werden kann.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Der proteolytische Verdau von Proteinen in Peptide ist ein wichtiger Schritt in der Tandem-Massenspektrometrie. Dabei werden Peptide fragmentiert und die sich ergebenden Fragmentionen geben Aufschluss über die Aminosäuresequenz des zu untersuchenden Proteins. Dabei sind für die Fragmentierung sowohl Länge und Sequenz, als auch der Ladungszustand des Peptids ungemein wichtig. Diese Parameter bedingen sich durch Endoproteasen, die für den proteolytischen Verdau eingesetzt werden. Eine Voraussetzung hierfür ist die Spezifität der Protease. Trypsin ist bei weitem die gebräuchlichste Protease zur massenspektrometrischen Probenvorbereitung. Allerdings bietet Trypsin keine Komplettlösung. Je nach Fragestellung und Applikation müssen weitere Proteasen eingesetzt werden, um eine komplette Sequenzabdeckung zu gewährleisten und möglichst alle posttranslationalen Modifikationen nachzuweisen, oder bestimmte Proteomklassen (z.B Phosphoproteom

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dengue-Fieber ist eine durch Stechmücken der Gattungen Aedes aegypti und Aedes albopticus übertragene, virale Infektionskrankheit des Menschen, welche eine zunehmende Bedrohung für die Weltbevölkerung darstellt; das Infektionsrisiko betrifft vorwiegend Menschen, die in tropischen und subtropischen Gebieten der Erde (Asien, Afrika, Amerika) leben. Bei dem Erreger handelt es sich um ein Flavivirus, bestehend aus einer positiv polarisierten Einzelstrang-RNA, welches in vier verschiedenen Serotypen existiert. Eine Infektion mit Dengue-Viren zeigt sich durch drei mögliche Krankheitsbilder: Klassisches Dengue-Fieber (DF), hämorrhagisches Dengue-Fieber (DHF) oder Dengue-Schock-Syndrom (DSS). Das Dengue-Virus-Genom codiert eine Serin-Protease mit einer klassischen katalytischen Triade, bestehend aus den Aminosäuren His51, Asp75 und Ser135. Die Funktion der Dengue-Virus-Protease besteht in der post-translationalen, proteolytischen Prozessierung des viralen Polyprotein-Vorläufers, womit sie essentiell für die Virus-Replikation ist und damit einen wichtigen therapeutischen Ansatz für die Entwicklung neuer Wirkstoffe gegen Dengue-Fieber darstellt. Die Ziele der vorliegenden Arbeit bestanden darin, neue potentielle Inhibitoren der Dengue-Virus Typ 2 NS2B-NS3 Protease (DEN-2 NS2B-NS3pro) zu synthetisieren, deren Hemmwirkung sowie den Inhibitionstyp mithilfe fluorimetrischer Enzym-Assays zu bestimmen, Struktur-Wirkungs-Beziehungen (u.a. mithilfe von Molecular Docking-Rechnungen) zu analysieren und die erhaltenen Leitstrukturen zu optimieren. In der vorliegenden Arbeit wurden zwei Substanzklassen und damit zwei Teilprojekte behandelt: Phenylacrylsäureamide im ersten Teilprojekt, Benzothiazole und Diarylthioether zusammen im zweiten Teilprojekt. Im ersten Teilprojekt zeigten einige Phenylacrylsäureamide eine schwache Hemmung der DEN-2 NS2B-NS3pro zwischen ca. 50 und 61 % bei einer Inhibitorkonzentration von 50 µM sowie eine nicht-kompetitive Hemmung, welche jedoch durch vielfältige Derivatisierung kaum verändert oder verbessert werden konnte. Darüber hinaus wurden die endogenen Serin-Proteasen alpha-Chymotrypsin und Trypsin durch einige Phenylacrylsäureamide erheblich stärker gehemmt als die DEN-2 NS2B-NS3pro. Das zweite Teilprojekt befasste sich mit der Synthese und Testung von Diarylthioethern mit hydroxy-substituierten Benzothiazol-Bausteinen sowie der Testung einiger methoxy-substituierter Synthese-Vorstufen der Endverbindungen, um die Relevanz und den Einfluss der einzelnen Bausteine auf die Hemmung der DEN-2 NS2B-NS3pro zu untersuchen. Der in der vorliegenden Arbeit synthetisierte, potenteste Inhibitor der DEN-2 NS2B-NS3pro (Hemmung: 90 % [50 µM]; IC50 = 3.6 +/- 0.11 µM) und der DEN-3 NS2B-NS3pro (Hemmung: >99 % [100 µM]; IC50 = 9.1 +/- 1.02 µM), SH65, ein Diarylthioether-Benzothiazol-Derivat, entstand aufgrund der Vorhersage zweier möglicher Bindungsmodi (kompetitiv und nicht-kompetitiv) mithilfe von Molecular Docking-Experimenten an der Röntgen-Kristall-struktur der DEN-3 NS2B-NS3pro (PDB-Code: 3U1I). Nach experimenteller Bestimmung der IC50-Werte bei unterschiedlichen Substratkonzentrationen erwies sich SH65 jedoch als nicht-kompetitiver Inhibitor der DEN-2 NS2B-NS3pro. Trypsin wurde von SH65 vergleichbar stark gehemmt (96% [50 µM]; IC50 = 6.27 +/- 0.68 µM) wie die beiden getesteten Dengue-Virus-Proteasen, nicht jedoch alpha-Chymotrypsin (nur 21% Hemmung bei 50 µM), wodurch diesem Inhibitor zumindest eine relative Selektivität gegenüber Serin-Proteasen zugeschrieben werden kann. SH65 zeigte lediglich Protease-Hemmung in den Enzym-Assays, jedoch keine antivirale Aktivität bei der Testung an Dengue-Virus-infizierten Zellen, was aber wiederum bei der synthetisierten Vorstufe von SH65, welche anstelle der beiden Hydroxy-Gruppen über Methoxy-Gruppen verfügt, der Fall war. Diarylthioether mit mehrfach hydroxy-substituiertem Benzothiazol-Baustein stellen hiermit eine neue, vielversprechende Wirkstoffgruppe zur Hemmung sowohl der Dengue-Virus Typ 2- als auch der Dengue-Virus Typ 3 NS2B-NS3 Protease dar.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Forschung über Membranenproteine stellt strenge Hindernisse, seit ruhigem gerade wenige Beispiele der Membranenproteinsorten sind gekennzeichnet worden in den verwendbaren experimentellen Plattformen gegenüber. Die Hauptherausforderung ist, ihre ausgezeichnete entworfene strukturelle Vollständigkeit zu konservieren, während die Ausdruck-, Lokalisierungs- und Wiederherstellungprozesse auftreten. In-vitro übersetzungssysteme können Vorteile über auf Zellenbasisgenausdruck zum Beispiel haben, wenn das über-ausgedrückte Produkt zur Wirtszelle giftig ist oder wenn fehlende Pfosten-Übersetzungsänderung in den bakteriellen Ausdrucksystemen die Funktionalität der Säugetier- Proteine oder Mangel an vorhandenem Membranenraum verdirbt, Funktionsausdruck verbieten.rn Der Nachahmer von biologische Membranen wie feste gestützte Lipidmembranen sind als Plattform am meisten benutzt, Proteinmembraneninteraktionen nachzuforschen. Wir sind in der Lage, Membranenproteinsorte, da wir eine Plattform für Membranenproteinsynthese vorstellen, nämlich die in-vitrosynthese der Membranenproteine in ein Peptid gestütztes Membranensystem zu adressieren. Die Wiederherstellung der Membranenproteine in den Lipid bilayers resultiert im Allgemeinen mit verschiedenen Proteinanpassungen. Als Alternative erforschen wir dieses System zum ersten Mal, um genaueres Modell zu den zellularen Membranen zu verursachen und ihre Funktion, wie Proteineinfügung, Proteinfunktion und Ligandinteraktionen nachzuahmen.rn In dieser Arbeit ist unser Ziel, komplizierte Transmembraneproteine, wie des Cytochrome bo3-ubiquinol Oxydase (Cyt-bo3) direkt innerhalb der biomimetic vorbildlichen Membrane zu synthetisieren. In unserem System wird festes gestütztes tBLM wie, P19/DMPE/PC als Plattform benutzt. Dieses künstliche Membranensystem mimiks die amphiphile Architektur eines Zelle-abgeleiteten Membranensystems.rn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wurde eine Analysenmethode auf Basis der Massenbestimmung über Elektrospray-Ionisation qualifiziert, mit der es möglich ist, den Gehalt beider in humanen Zellen vorliegenden isoformen Chaperone HSP90-alpha und HSP90-beta sowie deren Phosphorylierungsstatus in der sog. „charged linker“-Region (CLR) getrennt voneinander zu bestimmen. Die Quantifizierung dieser posttranslationalen Modifikation von HSP90 in der noch wenig untersuchten Region des Chaperons stellte eine besondere Herausforderung an das analytische Messsystem dar, da diese sich fast ausschließlich aus geladenen Aminosäuren zusammensetzt und eine hohe Sequenzhomologie der beiden Isoformen in humanen Zellen vorliegt. Mit dieser Methode ist es gelungen, sowohl die stärkere Expression beider Isoformen in Tumor-Zelllinien im Vergleich zu Nicht-Tumor-Zelllinien als auch signifikant höhere Level beider phosphorylierten Varianten in den Tumor-Zelllinien nachzuweisen. Des Weiteren konnte durch gezielte Arretierung der Tumor-Zelllinie HCT116 in der G0/G1-Phase des Zellzyklus der Nachweis erbracht werden, dass nur HSP90-alpha in diesem Ruhestadium der Zellteilung in der phosphorylierten Form vorliegt. rnDa die Phosphorylierung der CLR von HSP90 als ein Marker für die Substrataktivierung herangezogen werden kann, besteht jetzt die Möglichkeit, Auswirkungen von z. B. HSP90-Inhibitoren auf beide HSP90-Isoformen hinsichtlich ihrer Expression und Phosphorylierung durch die Casein Kinase II (CK II) im zellulären Umfeld zu testen.rnIn-vitro konnte die Phosphorylierung der CLR von HSP90-alpha und -beta mit der CK II an den rekombinant hergestellten Proteinen nachgestellt werden. Dieses typische Phosphorylierungs-Motiv (S-X-X-E/D) findet man bei sehr vielen Co-Chaperonen wie auch bei der Prostaglandin E Synthase p23, das ebenfalls durch eine in-vitro Kinase-Reaktion mit der CK II an drei Positionen phosphoryliert wurde. Durch ein Binde-Assay zeigte sich, dass p23 nur in dieser modifizierten Form an HSP90-alpha bindet. Das Bindeverhalten von p23 an die beta-Isoform wird durch diese Phosphorylierung jedoch nicht beeinflusst. Diese Erkenntnisse erweitern das Verständnis des bis dato beschriebenen Chaperon-Zyklus von HSP90 und zeigen deutliche Unterschiede in den Aktivierungszyklen beider Isoformen auf. Da die Casein Kinase II hier entscheidend in den durch HSP90 vermittelten Aktivierungsprozess eingreift, eröffnet sich ein weites Feld an Möglichkeiten, diese Prozesse an weiteren Co-Chaperonen und Substratproteinen zu studieren.rn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Chemotherapeutic SN1‑methylating agents are important anticancer drugs. They induce several covalent modifications in the DNA, from which O6‑methylguanine (O6MeG) is the main toxic lesion. In this work, different hypotheses that have been proposed to explain the mechanism of O6MeG‑triggered cell death were tested. The results of this work support the abortive processing model, which states that abortive post‑replicative processing of O6MeG‑driven mispairs by the DNA mismatch repair (MMR) machinery results in single‑strand gaps in the DNA that, upon a 2nd round of DNA replication, leads to DNA double‑strand break (DSB) formation, checkpoint activation and cell death. In this work, it was shown that O6MeG induces an accumulation of cells in the 2nd G2/M‑phase after treatment. This was accompanied by an increase in DSB formation in the 2nd S/G2/M‑phase, and paralleled by activation of the checkpoint kinases ATR and CHK1. Apoptosis was activated in the 2nd cell cycle. A portion of cells continue proliferating past the 2nd cell cycle, and triggers apoptosis in the subsequent generations. An extension to the original model is proposed, where the persistence of O6MeG in the DNA causes new abortive MMR processing in the 2nd and subsequent generations, where new DSB are produced triggering cell death. Interestingly, removal of O6MeG beyond the 2nd generation lead to a significant, but not complete, reduction in apoptosis, pointing to the involvement of additional mechanisms as a cause of apoptosis. We therefore propose that an increase in genomic instability resulting from accumulation of mis‑repaired DNA damage plays a role in cell death induction. Given the central role of DSB formation in toxicity triggered by chemotherapeutic SN1‑alkylating agents, it was aimed in the second part of this thesis to determine whether inhibition of DSB repair by homologous recombination (HR) or non‑homologous end joining (NHEJ) is a reasonable strategy for sensitizing glioblastoma cells to these agents. The results of this work show that HR down‑regulation in glioblastoma cells impairs the repair of temozolomide (TMZ)‑induced DSB. HR down‑regulation greatly sensitizes cells to cell death following O6‑methylating (TMZ) or O6‑chlorethylating (nimustine) treatment, but not following ionizing radiation. The RNAi mediated inhibition in DSB repair and chemo‑sensitization was proportional to the knockdown of the HR protein RAD51. Chemo‑sensitization was demonstrated for several HR proteins, in glioma cell lines proficient and mutated in p53. Evidence is provided showing that O6MeG is the primary lesion responsible for the increased sensitivity of glioblastoma cells following TMZ treatment, and that inhibition of the resistance marker MGMT restores the chemo‑sensitization achieved by HR down‑regulation. Data are also provided to show that inhibition of DNA‑PK dependent NHEJ does not significantly sensitized glioblastoma cells to TMZ treatment. Finally, the data also show that PARP inhibition with olaparib additionally sensitized HR down‑regulated glioma cells to TMZ. Collectively, the data show that processing of O6MeG through two rounds of DNA replication is required for DSB formation, checkpoint activation and apoptosis induction, and that O6MeG‑triggered apoptosis is also executed in subsequent generations. Furthermore, the data provide proof of principle evidence that down‑regulation of HR is a reasonable strategy for sensitizing glioma cells to killing by O6‑alkylating chemotherapeutics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die technische Silikatproduktion erfordert in der Regel hohe Temperaturen und extreme pH-Werte. In der Natur hingegen haben insbesondere Kieselschwämme die außergewöhnliche Fähigkeit, ihr Silikatskelett, das aus einzelnen sogenannten Spiculae besteht, enzymatisch mittels des Proteins Silicatein zu synthetisieren. rnIm Inneren der Spiculae, im zentralen Kanal, befindet sich das Axialfilament, welches hauptsächlich aus Silicatein-α aufgebaut ist. Mittels Antikörperfärbungen und Elektronenmikroskopischen Analysen konnte festgestellt werden, dass Silicatein in mit Kieselsäure-gefüllten Zellorganellen (silicasomes) nachzuweisen ist. Mittels dieser Vakuolen kann das Enzym und die Kieselsäure aus der Zelle zu den Spiculae im extrazellulären Raum befördert werden, wo diese ihre endgültige Länge und Dicke erreichen. Zum ersten Mal konnte nachgewiesen werden, dass rekombinant hergestelltes Silicatein-α sowohl als Siliciumdioxid-Polymerase als auch Siliciumdioxid-Esterase wirkt. Mittels Massenspektroskopie konnte die enzymatische Polymerisation von Kieselsäure nachverfolgt werden. Durch Spaltung der Esterbindung des künstlichen Substrates Bis(p-aminophenoxy)-dimethylsilan war es möglich kinetische Parameter der Siliciumdioxid-Esterase-Aktivität des rekombinanten Silicateins zu ermitteln.rnZu den größten biogenen Silikatstukuren auf der Erde gehören die Kieselnadeln der Schwammklasse Hexactinellida. Nadelextrakte aus den Schwammklassen Demospongien (S. domuncula) und Hexactinellida (M. chuni) wurden miteinander verglichen um die potentielle Existenz von Silicatein oder Silicatein-ähnliche Molekülen und die dazu gehörige proteolytischen Aktivität nachzuweisen. Biochemische Analysen zeigten, dass das 27 kDA große isolierte Polypeptid in Monoraphis mehrere gemeinsame Merkmale mit den Silicateinen der Demospongien teilt. Dazu gehören die Größe und die Proteinase-Aktivität. rnUm die Frage zu klären, ob das axiale Filament selbst zur Formbildung der Skelettelemente beiträgt, wurde ein neues mildes Extraktionsverfahren eingeführt. Dieses Verfahren ermöglichte die Solubilisierung des nativen Silicateins aus den Spiculae. Die isolierten Silicateine lagen als Monomere (24 kDa) vor, die Dimere durch nicht-kovalente Bindungen ausbildeten. Darüber hinaus konnten durch PAGE-Gelelektrophorese Tetramere (95 kDa) und Hexamere (135 kDa) nachgewiesen werden. Die Monomere zeigten eine beträchtliche proteolytische Aktivität, die sich während der Polymerisationsphase des Proteins weiter erhöhte. Mit Hilfe der Lichtmikroskopie und Elektronenmikroskopie (TEM) konnte die Assemblierung der Proteine zu filamentartigen Strukturen gezeigt werden. Die Selbstorganisation der Silicatein-α-Monomeren scheint eine Basis für Form- und Musterbildung der wachsenden Nadeln zu bilden.rn Um die Rolle des kürzlich entdeckten Proteins Silintaphin-1, ein starker Interaktionspartner des Silicatein-α, während der Biosilifizierung zu klären, wurden Assemblierungs-Experimente mit den rekombinanten Proteinen in vitro durchgeführt. Zusätzlich wurde deren Effekt auf die Biosilikatsynthese untersucht. Elektronenmikroskopische Analysen ergaben, dass rekombinantes Silicatein-α zufällig verteilte Aggregate bildet, während die Koinkubation beider Proteine (molekulares Verhältnis 4:1) über fraktal artige Strukturen zu Filamenten führt. Auch die enzymatische Aktivität der Silicatein-α-vermittelte Biosilikatsynthese erhöhte sich in Gegenwart von Silintaphin-1 um das 5,3-fache. rn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die Pathogenese chronisch inflammatorischer Erkrankungen ist von einer Dysregulation der pro-inflammatorischen Genexpression geprägt. Dieser liegen wahrscheinlich pathologische Veränderungen der Aktivität von verschiedenen Transkriptionsfaktoren und RNA-bindenden Proteinen zugrunde. In dieser Arbeit konnte die Regulation der KSRP-Expression in einem murinen Modell der rheumatoiden Arthritis (RA) nachgewiesen werden. In humanen Chondrozyten führte eine erhöhte KSRP-Expression zu einer Reduktion der Expression von bekannten KSRP-Zielgenen. Der Vergleich von verschiedenden Microarray-Analysen aus den verwendeten humanen und murinen Modellen der RA führte zur Identifikation von pro-inflammatorischen und pro-angiogenetischen Faktoren (SPARC, MMP2, MMP3, PLA2G2D, GZMA, HPSE, TNMD und IL-18-R), die in der RA eine Rolle spielen und höchstwahrscheinlich durch eine erhöhte KSRP-Expression reguliert werden. Daher könnte eine Modulation der KSRP-Expression bei der Therapie von Autoimmunerkrankungen von Bedeutung sein. In diesem Zusammenhang ist die Detektion der Bindung des cardioprotektiven und anti-inflammatorisch wirkenden Naturstoffs Resveratrol an KSRP zu nennen. Diese spezifische Interaktion führte zu einer Reduktion der p38-MAPK-vermittelten Thr-Phosphorylierung des KSRP-Proteins (in situ und in vivo), was eine Aktivierung der KSRP-vermittelten Mechanismen zur Folge hatte. Somit konnte in situ die mRNA-Stabilität der iNOS reduziert und die miR-155-Expression erhöht werden. Im murinen Atherosklerosemodell führte die Behandlung mit Resveratrol zu einer verringerten Expression bekannter KSRP-Ziel-mRNAs. rnNeben diesem post-translationalen Regulationsmechanismus von KSRP durch Resveratrol konnte die Modulation der KSRP-Expression auf transkriptioneller Ebene durch KSRP selbst gezeigt werden. Dies geschieht möglicherweise über die Bindung von KSRP an das FUSE-analoge Element innerhalb des KSRP-Promotors, welches eine positive Autoregulation der KSRP-Expression bewirkt. Bei der Analyse der post-transkriptionellen Regulation der KSRP-Expression interagierten die mRNA-bindenden Proteine HuR, PABP und die AUF-1-Isoformen p40, p42 und p45 in vitro mit der KSRP-3’UTR. Dabei konnte in Expressionsanalysen nachgewiesen werden, dass die KSRP-mRNA durch PABP positiv und durch p42 negativ reguliert wird.rnZusammenfassend ist zu sagen, dass die KSRP-Expression neben post-translationalen Mechanismen auch auf transkriptioneller und post-transkriptioneller Ebene moduliert wird. Zusätzlich wurde eine Regulation der KSRP-Expression innerhalb entzündlicher Erkrankungen nachgewiesen, die Bedeutung dieser Modulation für die pro-inflammatorischen Genexpression diskutiert und ein möglicher therapeutischer Angriffspunkt durch Resveratrol identifiziert.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die vorliegende kumulative Arbeit umfasst Analysen zur Aufklärung der molekularen Grundlagen des humanen Usher-Syndroms (USH), der häufigsten Ursache kombinierter vererblicher Taub-Blindheit. Ziel dieser Arbeit war es, neue Erkenntnisse zur Funktion der USH-Proteine und den von ihnen organisierten Protein-Netzwerken in der Photorezeptorzelle zu erhalten. Dadurch sollten weitere Einsichten in die molekularen Ursachen des retinalen Phänotyps von USH gewonnen werden. Die Ergebnisse dieser Analysen wurden in einem Übersichtsartikel (I) und zwei Originalarbeiten (II, III) zusammengestellt.rn Im Übersichtsartikel (I) wurden die vorliegenden Hinweise zusammengefasst, die USH auf Grundlage der molekularen Verbindungen ebenfalls als Ciliopathien definiert. Zudem wird die Bedeutung des periciliären USH-Proteinnetzwerkes für das sensorische Cilium (Außensegment) der Photorezeptorzelle herausgestellt. rn In Publikation II wurde der Aufbau des USH1-USH2-Proteinnetzwerkes als Teil des periciliären Komplexes analysiert, der beim cargo handover von vesikulärer Fracht vom Innensegment- auf den ciliären Transport für die Photorezeptorzelle essentiell ist. Experimentell wurde Ush2a als neuer SANS-Interaktionspartner validiert. Des Weiteren wurde ein ternärer Komplex aus den USH-Proteinen SANS, Ush2a und Whirlin identifiziert, dessen Zusammensetzung durch die phosphorylierungsabhängige Interaktion zwischen SANS und Ush2a reguliert werden könnte. Dieser ternäre Komplex kann sowohl der Integrität der Zielmembran dienen als auch am Transfer von Molekülen ins Außensegment beteiligt sein.rn In Publikation III wurde das MAGUK-Protein Magi2 als neuer Interaktionspartner von SANS identifiziert und die Interaktion durch komplementäre Interaktionsassays validiert. Dabei wurde ein internes PDZ-Binde-Motiv in der SAM-Domäne von SANS identifiziert, das die Interaktion zur PDZ5-Domäne von Magi2 phosphorylierungsabhängig vermittelt. Dadurch wurde bestätigt, dass SANS durch post-translationale Modifizierung reguliert wird. Weiterführende Experimente zur Funktion des Magi2-SANS-Komplexes zeigen, dass Magi2 an Prozess der Rezeptor-vermittelten Endocytose beteiligt ist. Die Phosphorylierung von SANS durch die Kinase CK2 spielt bei der Endocytose ebenfalls eine wichtige Rolle. Der Phosphorylierungsstatus von SANS moduliert die Interaktion zu Magi2 und reguliert dadurch negativ den Prozess der Endocytose. In RNAi-Studien wurde die durch Magi2-vermittelte Endocytose darüber hinaus mit dem Prozess der Ciliogenese verknüpft. Die Analyse der subzellulären Verteilung der Interaktionspartner lokalisieren Magi2 im periciliären Komplex und assoziieren das periciliäre USH-Proteinnetzwerk dadurch mit dem Prozess der Endocytose in der ciliary pocket. Der SANS-Magi2-Komplex sollte demnach für Aufbau und Funktion des sensorischen Ciliums der Photorezeptorzelle eine wichtige Rolle spielen.rn Die Gesamtheit an Informationen, die aus den Publikationen dieser Dissertation und aus den Kooperationsprojekten (*) resultieren, haben die Kenntnisse zur zellulären Funktion der USH-Proteine und ihrer Interaktionspartner und damit über die pathogenen Mechanismen von USH erweitert. Dies bildet die Basis, um fundierte Therapiestrategien zu entwickeln.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Krebs stellt eine der häufigsten Todesursachen in Europa dar. Grundlage für eine langfristige Verbesserung des Behandlungserfolgs ist ein molekulares Verständnis der Mechanismen, welche zur Krankheitsentstehung beitragen. In diesem Zusammenhang spielen Proteasen nicht nur eine wichtige Rolle, sondern stellen auch bei vielerlei Erkrankungen bereits anerkannte Zielstrukturen derzeitiger Behandlungsstrategien dar. Die Protease Threonin Aspartase 1 (Taspase1) spielt eine entscheidende Rolle bei der Aktivierung von Mixed Lineage Leukemia (MLL)-Fusionsproteinen und somit bei der Entstehung aggressiver Leukämien. Aktuelle Arbeiten unterstreichen zudem die onkologische Relevanz von Taspase1 auch für solide Tumore. Die Kenntnisse über die molekularen Mechanismen und Signalnetzwerke, welche für die (patho)biologischen Funktionen von Taspase1 verantwortlich sind, stellen sich allerdings noch immer als bruchstückhaft dar. Um diese bestehenden Wissenslücken zu schließen, sollten im Rahmen der Arbeit neue Strategien zur Inhibition von Taspase1 erarbeitet und bewertet werden. Zusätzlich sollten neue Einsichten in evolutionären Funktionsmechanismen sowie eine weitergehende Feinregulation von Taspase1 erlangt werden. Zum einen erlaubte die Etablierung und Anwendung eines zellbasierten Taspase1-Testsystem, chemische Verbindungen auf deren inhibitorische Aktivität zu testen. Überraschenderweise belegten solch zelluläre Analysen in Kombination mit in silico-Modellierungen eindeutig, dass ein in der Literatur postulierter Inhibitor in lebenden Tumorzellen keine spezifische Wirksamkeit gegenüber Taspase1 zeigte. Als mögliche Alternative wurden darüber hinaus Ansätze zur genetischen Inhibition evaluiert. Obwohl publizierte Studien Taspase1 als ααββ-Heterodimer beschreiben, konnte durch Überexpression katalytisch inaktiver Mutanten kein trans-dominant negativer Effekt und damit auch keine Inhibition des wildtypischen Enzyms beobachtet werden. Weiterführende zellbiologische und biochemische Analysen belegten erstmalig, dass Taspase1 in lebenden Zellen in der Tat hauptsächlich als Monomer und nicht als Dimer vorliegt. Die Identifizierung evolutionär konservierter bzw. divergenter Funktionsmechanismen lieferte bereits in der Vergangenheit wichtige Hinweise zur Inhibition verschiedenster krebsrelevanter Proteine. Da in Drosophila melanogaster die Existenz und funktionelle Konservierung eines Taspase1-Homologs postuliert wurde, wurde in einem weiteren Teil der vorliegenden Arbeit die evolutionäre Entwicklung der Drosophila Taspase1 (dTaspase1) untersucht. Obwohl Taspase1 als eine evolutionär stark konservierte Protease gilt, konnten wichtige Unterschiede zwischen beiden Orthologen festgestellt werden. Neben einem konservierten autokatalytischen Aktivierungsmechanismus besitzt dTaspase1 verglichen mit dem humanen Enzym eine flexiblere Substraterkennungs-sequenz, was zu einer Vergrößerung des Drosophila-spezifischen Degradoms führt. Diese Ergebnisse zeigen des Weiteren, dass zur Definition und Vorhersage des Degradoms nicht nur proteomische sondern auch zellbiologische und bioinformatische Untersuchungen geeignet und notwendig sind. Interessanterweise ist die differentielle Regulation der dTaspase1-Aktivität zudem auf eine veränderte intrazelluläre Lokalisation zurückzuführen. Das Fehlen von in Vertebraten hochkonservierten aktiven Kernimport- und nukleolären Lokalisationssignalen erklärt, weshalb dTaspase1 weniger effizient nukleäre Substrate prozessiert. Somit scheint die für die humane Taspase1 beschriebene Regulation von Lokalisation und Aktivität über eine Importin-α/NPM1-Achse erst im Laufe der Entwicklung der Vertebraten entstanden zu sein. Es konnte also ein bislang unbekanntes evolutionäres Prinzip identifiziert werden, über welches eine Protease einen Transport- bzw. Lokalisations-basierten Mechanismus zur Feinregulation ihrer Aktivität „von der Fliege zum Menschen“ nutzt. Eine weitere Möglichkeit zur dynamischen Funktionsmodulation bieten post-translationale Modifikationen (PTMs) der Proteinsequenz, zu welcher Phosphorylierung und Acetylierung zählen. Interessanterweise konnte für die humane Taspase1 über den Einsatz unabhängiger Methoden einschließlich massenspektrometrischer Analysen eine Acetylierung durch verschiedene Histon-Acetyltransferasen (HATs) nachgewiesen werden. Diese Modifikation erfolgt reversibel, wobei vor allem die Histon-Deacetylase HDAC1 durch Interaktion mit Taspase1 die Deacetylierung der Protease katalysiert. Während Taspase1 in ihrer aktiven Konformation acetyliert vorliegt, kommt es nach Deacetylierung zu einer Reduktion ihrer enzymatischen Aktivität. Somit scheint die Modulation der Taspase1-Aktivität nicht allein über intra-proteolytische Autoaktivierung, Transport- und Interaktionsmechanismen, sondern zudem durch post-translationale Modifikationen gesteuert zu werden. Zusammenfassend konnten im Rahmen dieser Arbeit entscheidende neue Einblicke in die (patho)biologische Funktion und Feinregulation der Taspase1 gewonnen werden. Diese Ergebnisse stellen nicht nur einen wichtigen Schritt in Richtung eines verbesserten Verständnis der „Taspase1-Biologie“, sondern auch zur erfolgreichen Inhibition und Bewertung der krebsrelevanten Funktion dieser Protease dar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Metalloproteasen Meprin α und β übernehmen Schlüsselfunktionen in vielen (patho-) physiologischenrnProzessen. So sind sie beteiligt an der Umstrukturierung der extrazellulären Matrix, an immunologischenrnReaktionen oder an entzündlichen Gewebserkrankungen. Die beiden Enzyme kommenrnhauptsächlich in den Bürstensaummembranen von Niere und Darm sowie in der Haut von Vertebratenrnvor. Für die Erforschung der biologischen Aktivität der Meprine wurde in dieser Arbeit der ModellorganismusrnDanio rerio verwendet, der vor allem durch die Möglichkeit der gentechnischen Manipulationrnprädestiniert ist. Im Fisch konnten drei homologe Enzyme (Meprin α1, α2 und β) nachgewiesenrnwerden. Während mRNA-Analysen eine nahezu ubiquitäre Verteilung der Meprine offenbarten,rnkonnte ich mittels spezifischer Antikörper die Expression auf Proteinebene nachweisen. WährendrnMeprin α1 und β verstärkt im Darmepithel und in der Epidermis lokalisiert sind, konnte Meprinrnα2 ausschließlich in der Lamina propria des Darms identifiziert werden.rnDer Hauptteil der vorliegenden Arbeit zielt auf die spezifische Reduzierung des Expressionslevels derrnMeprine in Embryonen des Zebrabärblings. Dies wurde durch die Mikroinjektion von sogenanntenrnMorpholinos in die Zygote erzielt. Morpholinos sind RNA-Moleküle, die spezifisch an die mRNA desrnZielproteins binden können und die Translation verhindern. Die auftretenden Effekte durch das Fehlenrnder Meprine lassen so Rückschlüsse auf ihre physiologische Funktion zu. Nach der Injektion vonrnMorpholinos gegen Meprin α1 zeigten sich lediglich leichte epidermale Deformationen. Bei Meprin βrnhingegen kam es zu einer massiven Fehlbildung von Organen im Rumpf- und Schwanzbereich. Diesesrnführte zu erheblichen Defekten; die Embryonen starben innerhalb der ersten 24 Stunden nach derrnBefruchtung. Demzufolge müssen Meprin α1 und Meprin β insbesondere an der Gewebsdifferenzierungrnbeteiligt sein. Dies korreliert mit verschiedenen Experimenten, u.a. an knockout Mäusen, ausrndenen hervorgeht, dass die Prozessierung und Aktivierung der Cytokine Interleukin-1β oder Interleukin-rn18 durch Meprin β erfolgen kann.rnDie Injektion von Meprin α2-Morpholinos erbrachte ein weiteres, eindrucksvolles Ergebnis: Das Blutgefäßsystemrnvon injizierten Embryonen war vollständig unterbrochen und es sammelten sich Erythrozytenrnim Bereich der Caudalvene an. Diese Phänotypen gleichen den knockdown-Experimenten mitrndem vascular endothelial growth factor VEGF-A, dem entscheidenden Wachstumsfaktor in der Angiogenesern(Blutgefäßbildung). Eine Inkubation des humanen VEGF-A mit (humanem) rekombinantemrnMeprin α bzw. β führte zu einer differenzierten Prozessierung des Moleküls. Diese Ergebnisse legenrnnahe, dass Meprin α pro-angiogenetisch wirkt, indem es VEGF-A prozessiert und damit die Gefäßbildungrnaktiviert. Aus den Daten dieser Arbeit wird die hohe Signifikanz der Meprine für die Proliferationrnund Differenzierung spezieller Gewebe deutlich, welche somit eine wichtige Grundlage für Studienrnan höheren Vertebraten darstellt.