2 resultados para Polymer stabilization

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dieser Arbeit wurde gezeigt, wie oberflächenfunktionalisierte Polystyrolnanopartikel zur Herstellung von Metallchalkogenid/Polymer-Hybridnanopartikeln eingesetzt werden können. Dazu wurden zunächst phosphonsäure- und phosphorsäurefunktionalisierte Surfmere synthetisiert, die anschließend bei der Miniemulsionspolymerisation von Styrol verwendet wurden. Die Surfmere dienten dabei zugleich zur Stabilisierung und als Comonomer. Die oberflächenfunktionalisierten Polystyrolnanopartikel wurden anschließend als Trägerpartikel für die Kristallisation von Metalloxiden eingesetzt. Dabei wurden Metalloxid/Polymer-Hybridnanopartikel mit einer „himbeerartigen“ Morphologie erhalten. Um die vielseitige Modifizierbarkeit der phosphonat- und phosphat¬funktionalisierten Polystyrolpartikel zu demonstrieren, wurden Cer-, Eisen- sowie Zinkoxid auf der Partikeloberfläche kristallisiert. Dazu wurden sowohl wässrige als auch alkoholische Metalloxid-Präkursorlösungen eingesetzt. Die synthetisierten Metall¬oxid/Polymer-Hybridpartikel wurden detailliert mit REM, TEM und PXRD analysiert. Die Untersuchung des Kristallisationsmechanismus hatte erwiesen, dass die komplexierten Metallkationen auf der Partikeloberfläche als Nukleationszentren wirkten und die Zutropfrate des Fällungsreagenz entscheidend für die Oberflächenkristallisation ist. Durch Mischungsexperimente von Metalloxidnanopartikeln und den oberflächen¬funktionalisierten Polymerpartikeln konnte die Hybridpartikelbildung über Hetero¬koagulation ausgeschlossen werden. Außerdem wurde festgestellt, dass die Polarität der funktionellen Gruppe über die Stärke der Komplexierung der Metalloxid-Präkursor bestimmt. Darüber hinaus wurde ein Modell zur Erklärung der kolloidalen Stabilisierung der Metalloxid/Polymer-Hybridsysteme aufgestellt und ein Zusammenhang zwischen dem gemessenen Zeta-Potential und der Oberflächenbedeckung der Polymerpartikel durch Metalloxid gefunden. Mit der Methode der Oberflächenkristallisation konnten frühe Stadien der Nukleation auf der Partikeloberfläche fixiert werden. Weiterhin wurden die individuellen physikalisch-chemischen Eigenschaften der hergestellten Metall¬oxid/Polymer-Hybridnano¬partikel untersucht. Dabei zeigten die CeO2/Polymer-Hybridpartikel eine hohe katalytische Aktivität bezüglich der photokatalytischen Oxidation von Rhodamin B, die als Modellreaktion durchgeführt wurde. Des Weiteren wurde die Magnetisierung der Magnetit/Polymer-Hybridpartikel gemessen. Die Fe3O4-Hybrid¬partikelsysteme wiesen eine vergleichbare Sättigungsmagnetisierung auf. Die Zinkoxid/Polymer-Hybridsysteme zeigten eine starke Lumineszenz im sichtbaren Bereich bei Anregung mit UV-Licht. Die Metalloxid/Polymer-Hybridpartikel, die mit den phosphonat- oder phosphatfunktion¬alisierten Polystyrolpartikeln hergestellt wurden, zeigten keine signifikanten Unterschiede in ihren physikochemischen Eigenschaften. Im Allgemeinen lässt sich schlussfolgern, dass sowohl Phosphonat- als auch Phosphatgruppen gleichermaßen für die Oberflächenkristallisation von Metalloxiden geeignet sind. Die Zink¬oxid/Polymer-Hybridsysteme stellen eine Ausnahme dar. Die Verwendung der phosphonat¬funktionalisierten Polystyrolpartikel führte zur Entstehung einer Zinkhydroxidphase, die neben der Zinkoxidphase gebildet wurde. Aufgrund dessen zeigten die ZnO/RPO3H2-Hybridpartikel eine geringere Lumineszenz im sichtbaren Bereich als die ZnO/RPO4H2-Hybridsysteme.rnDie Erkenntnisse, die bei der Oberflächenkristallisation von Metalloxiden gewonnen wurden, konnten erfolgreich auf Cadmiumsulfid übertragen werden. Dabei konnte Cadmiumsulfid auf der Oberfläche von phosphonatfunktionalisierten Polystyrolpartikeln kristallisiert werden. Mit Hilfe des RPO3H2-Surfmers konnten phosphonatfunktion¬alisierte Polystyrolpartikel mit superparamagnetischem Kern synthetisiert werden, die zur Herstellung von multifunktionalen CdS/Polymer-Hybridpartikeln mit Magnetitkern verwendet wurden. Die Kristallphase und die Oberflächenbedeckung der multi¬funktionalen Hybridsysteme wurden mit den CdS/Polymer-Hybridsystemen ohne magnetischen Kern verglichen. Dabei konnte nachgewiesen werden, dass in beiden Fällen Cadmiumsulfid in der Greenockit-Modifikation gebildet wurde. Die multifunktionalen CdS/Polymer-Hybridpartikel mit superparamagnetischem Kern konnten sowohl mit einem optischen als auch einem magnetischen Stimulus angeregt werden.rnrn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis I present a new coarse-grained model suitable to investigate the phase behavior of rod-coil block copolymers on mesoscopic length scales. In this model the rods are represented by hard spherocylinders, whereas the coil block consists of interconnected beads. The interactions between the constituents are based on local densities. This facilitates an efficient Monte-Carlo sampling of the phase space. I verify the applicability of the model and the simulation approach by means of several examples. I treat pure rod systems and mixtures of rod and coil polymers. Then I append coils to the rods and investigate the role of the different model parameters. Furthermore, I compare different implementations of the model. I prove the capability of the rod-coil block copolymers in our model to exhibit typical micro-phase separated configurations as well as extraordinary phases, such as the wavy lamellar state, percolating structuresrnand clusters. Additionally, I demonstrate the metastability of the observed zigzag phase in our model. A central point of this thesis is the examination of the phase behavior of the rod-coil block copolymers in dependence of different chain lengths and interaction strengths between rods and coil. The observations of these studies are summarized in a phase diagram for rod-coil block copolymers. Furthermore, I validate a stabilization of the smectic phase with increasing coil fraction.rnIn the second part of this work I present a side project in which I derive a model permitting the simulation of tetrapods with and without grafted semiconducting block copolymers. The effect of these polymers is added in an implicit manner by effective interactions between the tetrapods. While the depletion interaction is described in an approximate manner within the Asakura-Oosawa model, the free energy penalty for the brush compression is calculated within the Alexander-de Gennes model. Recent experiments with CdSe tetrapods show that grafted tetrapods are clearly much better dispersed in the polymer matrix than bare tetrapods. My simulations confirm that bare tetrapods tend to aggregate in the matrix of excess polymers, while clustering is significantly reduced after grafting polymer chains to the tetrapods. Finally, I propose a possible extension enabling the simulation of a system with fluctuating volume and demonstrate its basic functionality. This study is originated in a cooperation with an experimental group with the goal to analyze the morphology of these systems in order to find the ideal morphology for hybrid solar cells.