2 resultados para Polarized illumination
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Gegenstand dieser Arbeit war die Untersuchung von metallischen gemischtvalenten Manganaten und magnetischen Doppelperowskiten. Aufgrund ihres großen negativen Magnetowiderstandes (MW) sind diese halbmetallischen Oxide interessant für mögliche technische Anwendungen, z.B. als Leseköpfe in Festplatten. Es wurden die kristallographischen, elektronischen und magnetischen Eigenschaften von epitaktischen Dünnschichten und polykristallinen Pulverproben bestimmt.Epitaktische Dünnschichten der Verbindungen La0.67Ca0.33MnO3 und La0.67Sr0.33MnO3 wurdenmit Kaltkathodenzerstäubung und Laserablation auf einkristallinen Substraten wie SrTiO3abgeschieden. Mit Hall-Effekt Messungen wurde ein Zusammenbruch der Ladungsträgerdichte bei der Curie-Temperatur TC beobachtet.Mit dem Wechsel des Dotierungsatoms A von Ca (TC=232 K) zu Sr (TC=345 K)in La0.67A0.33MnO3 konnte die Feldsensitivität des Widerstandes bei Raumtemperatur gesteigert werden. Um die Sensitivität weiter zu erhöhen wurde die hohe Spinpolarisation von nahezu 100% in Tunnelexperimenten ausgenutzt. Dazu wurden biepitaktische La0.67Ca0.33MnO3 Schichten auf SrTiO3 Bikristallsubstraten hergestellt. Die Abhängigkeit des Tunnelmagnetowiderstandes (TMW) vom magnetischen Feld, Temperatur und Strum war ein Schwerpunkt der Untersuchung. Mittels spinpolarisierten Tunnelns durch die künstliche Korngrenze konnte ein hysteretischer TMW von 70% bei 4 K in kleinen Magnetfeldern von 120 Oe gemessen werden. Eine weitere magnetische Oxidverbindung, der Doppelperowskit Sr2FeMoO6 miteine Curie-Temperatur oberhalb 400 K und einem großen MW wurde mittels Laserablation hergestellt. Die Proben zeigten erstmals das Sättigunsmoment, welches von einer idealen ferrimagnetischen Anordnung der Fe und Mo Ionen erwartet wird. Mit Hilfe von Magnetotransportmessungen und Röntgendiffraktometrie konnte eine Abhängigkeit zwischen Kristallstruktur (Ordnung oder Unordnung im Fe, Mo Untergitter) und elektronischem Transport (metallisch oder halbleitend) aufgedeckt werden.Eine zweiter Doppelperowskit Ca2FeReO6 wurde im Detail als Pulverprobe untersucht. Diese Verbindung besitzt die höchste Curie-Temperatur von 540 K, die bis jetzt in magnetischen Perowskiten gefunden wurde. Mit Neutronenstreuung wurde eine verzerrte monoklinische Struktur und eine Phasenseparation aufgedeckt.
Resumo:
The use of Magnetic Resonance Imaging (MRI) as a diagnostic tool is increasingly employing functional contrast agents to study or contrast entire mechanisms. Contrast agents in MRI can be classified in two categories. One type of contrast agents alters the NMR signal of the protons in its surrounding, e.g. lowers the T1 relaxation time. The other type enhances the Nuclear Magnetic Resonance (NMR) signal of specific nuclei. For hyperpolarized gases the NMR signal is improved up to several orders of magnitude. However, gases have a high diffusivity which strongly influences the NMR signal strength, hence the resolution and appearance of the images. The most interesting question in spatially resolved experiments is of course the achievable resolution and contrast by controlling the diffusivity of the gas. The influence of such diffusive processes scales with the diffusion coefficient, the strength of the magnetic field gradients and the timings used in the experiment. Diffusion may not only limit the MRI resolution, but also distort the line shape of MR images for samples, which contain boundaries or diffusion barriers within the sampled space. In addition, due to the large polarization in gaseous 3He and 129Xe, spin diffusion (different from particle diffusion) could play a role in MRI experiments. It is demonstrated that for low temperatures some corrections to the NMR measured diffusion coefficient have to be done, which depend on quantum exchange effects for indistinguishable particles. Physically, if these effects can not change the spin current, they can do it indirectly by modifying the velocity distribution of the different spin states separately, so that the subsequent collisions between atoms and therefore the diffusion coefficient can eventually be affected. A detailed study of the hyperpolarized gas diffusion coefficient is presented, demonstrating the absence of spin diffusion (different from particle diffusion) influence in MRI at clinical conditions. A novel procedure is proposed to control the diffusion coefficient of gases in MRI by admixture of inert buffer gases. The experimental measured diffusion agrees with theoretical simulations. Therefore, the molecular mass and concentration enter as additional parameters into the equations that describe structural contrast. This allows for setting a structural threshold up to which structures contribute to the image. For MRI of the lung this allows for images of very small structural elements (alveoli) only, or in the other extreme, all airways can be displayed with minimal signal loss due to diffusion.