2 resultados para Poisson theorem
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
My work concerns two different systems of equations used in the mathematical modeling of semiconductors and plasmas: the Euler-Poisson system and the quantum drift-diffusion system. The first is given by the Euler equations for the conservation of mass and momentum, with a Poisson equation for the electrostatic potential. The second one takes into account the physical effects due to the smallness of the devices (quantum effects). It is a simple extension of the classical drift-diffusion model which consists of two continuity equations for the charge densities, with a Poisson equation for the electrostatic potential. Using an asymptotic expansion method, we study (in the steady-state case for a potential flow) the limit to zero of the three physical parameters which arise in the Euler-Poisson system: the electron mass, the relaxation time and the Debye length. For each limit, we prove the existence and uniqueness of profiles to the asymptotic expansion and some error estimates. For a vanishing electron mass or a vanishing relaxation time, this method gives us a new approach in the convergence of the Euler-Poisson system to the incompressible Euler equations. For a vanishing Debye length (also called quasineutral limit), we obtain a new approach in the existence of solutions when boundary layers can appear (i.e. when no compatibility condition is assumed). Moreover, using an iterative method, and a finite volume scheme or a penalized mixed finite volume scheme, we numerically show the smallness condition on the electron mass needed in the existence of solutions to the system, condition which has already been shown in the literature. In the quantum drift-diffusion model for the transient bipolar case in one-space dimension, we show, by using a time discretization and energy estimates, the existence of solutions (for a general doping profile). We also prove rigorously the quasineutral limit (for a vanishing doping profile). Finally, using a new time discretization and an algorithmic construction of entropies, we prove some regularity properties for the solutions of the equation obtained in the quasineutral limit (for a vanishing pressure). This new regularity permits us to prove the positivity of solutions to this equation for at least times large enough.
Resumo:
In dieser Arbeit werden wir ein Modell untersuchen, welches die Ausbreitung einer Infektion beschreibt. Bei diesem Modell werden zunächst Partikel gemäß eines Poissonschen Punktprozesses auf der reellen Achse verteilt. Bis zu einem gewissen Punkt auf der reellen Achse sind alle Partikel von einer Infektion befallen. Während sich nicht infizierte Partikel nicht bewegen, folgen die infizierten Partikel den Pfaden von voneinander unabhängigen Brownschen Bewegungen und verbreitet die Infektion dabei an den Orten, welche sie betreten. Wenn sie dabei auf ein nicht infiziertes Partikel treffen, ist dieses von diesem Moment an auch infiziert und beginnt ebenfalls, dem Pfad einer Brownschen Bewegung zu folgen und die Infektion auszubreiten. Auf diese Art verschiebt sich nun der am weitesten rechts liegende Ort R_t, an dem die Infektion bereits verbreitet wurde. Wir werden mit Hilfe des subadditiven Ergodensatzes zeigen, dass sich dieser Ort mit linearer Geschwindigkeit fortbewegt. Ferner werden wir eine obere und eine untere Schranke für die Ausbreitungsgeschwindkeit angeben. Danach werden wir zeigen, dass der Prozess Regenerationszeiten hat, nämlich solche zufällige Zeiten, zu denen er eine Art Neustart unter speziellen Startbedingungen durchführt. Wir werden diese für eine weitere Charakterisierung der Ausbreitungsgeschwingkeit nutzen. Ferner erhalten wir durch die Regenerationszeiten auch einen Zentralen Grenzwertsatz für R_t und können zeigen, dass die Verteilung der infizierten Partikel aus Sicht des am weitesten rechts liegenden infizierten Ortes gegen eine invariante Verteilung konvergiert.