2 resultados para Pneumatic Tires.
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die Dissertationsschrift beschäftigt sich mit der Entwicklung und Anwendung einer alternativen Probenzuführungstechnik für flüssige Proben in der Massenspektrometrie. Obwohl bereits einige Anstrengungen zur Verbesserung unternommen wurden, weisen konventionelle pneumatische Zerstäuber- und Sprühkammersysteme, die in der Elementspurenanalytik mittels induktiv gekoppeltem Plasma (ICP) standardmäßig verwendet werden, eine geringe Gesamteffizienz auf. Pneumatisch erzeugtes Aerosol ist durch eine breite Tropfengrößenverteilung gekennzeichnet, was den Einsatz einer Sprühkammer bedingt, um die Aerosolcharakteristik an die Betriebsbedingungen des ICPs anzupassen.. Die Erzeugung von Tropfen mit einer sehr engen Tropfengrößenverteilung oder sogar monodispersen Tropfen könnte die Effizienz des Probeneintrags verbessern. Ein Ziel dieser Arbeit ist daher, Tropfen, die mittels des thermischen Tintenstrahldruckverfahrens erzeugt werden, zum Probeneintrag in der Elementmassenspektrometrie einzusetzen. Das thermische Tintenstrahldruckverfahren konnte in der analytischen Chemie im Bereich der Oberflächenanalytik mittels TXRF oder Laserablation bisher zur gezielten, reproduzierbaren Deposition von Tropfen auf Oberflächen eingesetzt werden. Um eine kontinuierliche Tropfenerzeugung zu ermöglichen, wurde ein elektronischer Mikrokontroller entwickelt, der eine Dosiereinheit unabhängig von der Hard- und Software des Druckers steuern kann. Dabei sind alle zur Tropfenerzeugung relevanten Parameter (Frequenz, Heizpulsenergie) unabhängig voneinander einstellbar. Die Dosiereinheit, der "drop-on-demand" Aerosolgenerator (DOD), wurde auf eine Aerosoltransportkammer montiert, welche die erzeugten Tropfen in die Ionisationsquelle befördert. Im Bereich der anorganischen Spurenanalytik konnten durch die Kombination des DOD mit einem automatischen Probengeber 53 Elemente untersucht und die erzielbare Empfindlichkeiten sowie exemplarisch für 15 Elemente die Nachweisgrenzen und die Untergrundäquivalentkonzentrationen ermittelt werden. Damit die Vorteile komfortabel genutzt werden können, wurde eine Kopplung des DOD-Systems mit der miniaturisierten Fließinjektionsanalyse (FIA) sowie miniaturisierten Trenntechniken wie der µHPLC entwickelt. Die Fließinjektionsmethode wurde mit einem zertifizierten Referenzmaterial validiert, wobei für Vanadium und Cadmium die zertifizierten Werte gut reproduziert werden konnten. Transiente Signale konnten bei der Kopplung des Dosiersystems in Verbindung mit der ICP-MS an eine µHPLC abgebildet werden. Die Modifikation der Dosiereinheit zum Ankoppeln an einen kontinuierlichen Probenfluss bedarf noch einer weiteren Reduzierung des verbleibenden Totvolumens. Dazu ist die Unabhängigkeit von den bisher verwendeten, kommerziell erhältlichen Druckerpatronen anzustreben, indem die Dosiereinheit selbst gefertigt wird. Die Vielseitigkeit des Dosiersystems wurde mit der Kopplung an eine kürzlich neu entwickelte Atmosphärendruck-Ionisationsmethode, die "flowing atmospheric-pressure afterglow" Desorptions/Ionisations Ionenquelle (FAPA), aufgezeigt. Ein direkter Eintrag von flüssigen Proben in diese Quelle war bislang nicht möglich, es konnte lediglich eine Desorption von eingetrockneten Rückständen oder direkt von der Flüssigkeitsoberfläche erfolgen. Die Präzision der Analyse ist dabei durch die variable Probenposition eingeschränkt. Mit dem Einsatz des DOD-Systems können flüssige Proben nun direkt in die FAPA eingetragen, was ebenfalls das Kalibrieren bei quantitativen Analysen organischer Verbindungen ermöglicht. Neben illegalen Drogen und deren Metaboliten konnten auch frei verkäufliche Medikamente und ein Sprengstoffanalogon in entsprechend präpariertem reinem Lösungsmittel nachgewiesen werden. Ebenso gelang dies in Urinproben, die mit Drogen und Drogenmetaboliten versetzt wurden. Dabei ist hervorzuheben, dass keinerlei Probenvorbereitung notwendig war und zur Ermittlung der NWG der einzelnen Spezies keine interne oder isotopenmarkierte Standards verwendet wurden. Dennoch sind die ermittelten NWG deutlich niedriger, als die mit der bisherigen Prozedur zur Analyse flüssiger Proben erreichbaren. Um im Vergleich zu der bisher verwendeten "pin-to-plate" Geometrie der FAPA die Lösungsmittelverdampfung zu beschleunigen, wurde eine alternative Elektrodenanordnung entwickelt, bei der die Probe länger in Kontakt mit der "afterglow"-Zone steht. Diese Glimmentladungsquelle ist ringförmig und erlaubt einen Probeneintrag mittels eines zentralen Gasflusses. Wegen der ringförmigen Entladung wird der Name "halo-FAPA" (h-FAPA) für diese Entladungsgeometrie verwendet. Eine grundlegende physikalische und spektroskopische Charakterisierung zeigte, dass es sich tatsächlich um eine FAPA Desorptions/Ionisationsquelle handelt.
Resumo:
Die pneumatische Zerstäubung ist die häufigste Methode der Probenzuführung von Flüssigkeiten in der Plasmaspektrometrie. Trotz der bekannten Limitierungen dieser Systeme, wie die hohen Probenverluste, finden diese Zerstäuber aufgrund ihrer guten Robustheit eine breite Anwendung. Die flussratenabhängige Aerosolcharakteristik und pumpenbasierte Signalschwankungen limitieren bisher Weiterentwicklungen. Diese Probleme werden umso gravierender, je weiter die notwendige Miniaturisierung dieser Systeme fortschreitet. Der neuartige Ansatz dieser Arbeit basiert auf dem Einsatz modifizierter Inkjet-Druckerpatronen für die Dosierung von pL-Tropfen. Ein selbst entwickelter Mikrokontroller ermöglicht den Betrieb von matrixkodierten Patronen des Typs HP45 mit vollem Zugriff auf alle essentiellen Betriebsparameter. Durch die neuartige Aerosoltransportkammer gelang die effiziente Kopplung des Tropfenerzeugungssystems an ein ICP-MS. Das so aufgebaute drop-on-demand-System (DOD) zeigt im Vergleich zu herkömmlichen und miniaturisierten Zerstäubern eine deutlich gesteigerte Empfindlichkeit (8 - 18x, elementabhängig) bei leicht erhöhtem, aber im Grunde vergleichbarem Signalrauschen. Darüber hinaus ist die Flexibilität durch die große Zahl an Freiheitsgraden des Systems überragend. So ist die Flussrate über einen großen Bereich variabel (5 nL - 12,5 µL min-1), ohne dabei die primäre Aerosolcharakteristik zu beeinflussen, welche vom Nutzer durch Wahl der elektrischen Parameter bestimmt wird. Das entwickelte Probenzuführungssystem ist verglichen mit dem pneumatischen Referenzsystem weniger anfällig gegenüber Matrixeffekten beim Einsatz von realen Proben mit hohen Anteilen gelöster Substanzen. So gelingt die richtige Quantifizierung von fünf Metallen im Spurenkonzentrationsbereich (Li, Sr, Mo, Sb und Cs) in nur 12 µL Urin-Referenzmaterial mittels externer Kalibrierung ohne Matrixanpassung. Wohingegen beim pneumatischen Referenzsystem die aufwändigere Standardadditionsmethode sowie über 250 µL Probenvolumen für eine akkurate Bestimmung der Analyten nötig sind. Darüber hinaus wird basierend auf der Dosierfrequenz eines dualen DOD-Systems eine neuartige Kalibrierstrategie vorgestellt. Bei diesem Ansatz werden nur eine Standard- und eine Blindlösung anstelle einer Reihe unterschiedlich konzentrierter Standards benötigt, um eine lineare Kalibrierfunktion zu erzeugen. Zusätzlich wurde mittels selbst entwickelter, zeitlich aufgelöster ICP-MS umfangreiche Rauschspektren aufgenommen. Aus diesen gelang die Ermittlung der Ursache des erhöhten Signalrauschens des DOD, welches maßgeblich durch das zeitlich nicht äquidistante Eintreffen der Tropfen am Detektor verursacht wird. Diese Messtechnik erlaubt auch die Detektion einzeln zugeführter Tropfen, wodurch ein Vergleich der Volumenverteilung der mittels ICP-MS detektierten, gegenüber den generierten und auf optischem Wege charakterisierten Tropfen möglich wurde. Dieses Werkzeug ist für diagnostische Untersuchungen äußerst hilfreich. So konnte aus diesen Studien neben der Aufklärung von Aerosoltransportprozessen die Transporteffizienz des DOD ermittelt werden, welche bis zu 94 Vol.-% beträgt.