3 resultados para Periodic arrays
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Phononische Kristalle sind strukturierte Materialien mit sich periodisch ändernden elastischen Moduln auf der Wellenlängenskala. Die Interaktion zwischen Schallwellen und periodischer Struktur erzeugt interessante Interferenzphänomene, und phononische Kristalle erschließen neue Funktionalitäten, die in unstrukturierter Materie unzugänglich sind. Hypersonische phononische Kristalle im Speziellen, die bei GHz Frequenzen arbeiten, haben Periodizitäten in der Größenordnung der Wellenlänge sichtbaren Lichts und zeigen daher die Wege auf, gleichzeitig Licht- und Schallausbreitung und -lokalisation zu kontrollieren, und dadurch die Realisierung neuartiger akusto-optischer Anordnungen. Bisher bekannte hypersonische phononische Kristalle basieren auf thermoplastischen Polymeren oder Epoxiden und haben nur eingeschränkte thermische und mechanische Stabilität und mechanischen Kontrast. Phononische Kristalle, die aus mit Flüssigkeit gefüllten zylindrischen Kanälen in harter Matrix bestehen, zeigen einen sehr hohen elastischen Kontrast und sind bislang noch unerforscht. In dieser Dissertation wird die experimentelle Untersuchung zweidimensionaler hypersonischer phononischer Kristalle mit hexagonaler Anordnung zylindrischer Nanoporen basierend auf der Selbstorganisation anodischen Aluminiumoxids (AAO) beschrieben. Dazu wird die Technik der hochauflösenden inelastischen Brillouin Lichtstreuung (BLS) verwendet. AAO ist ein vielsetiges Modellsystem für die Untersuchung reicher phononischer Phänomene im GHz-Bereich, die eng mit den sich in den Nanoporen befindlichen Flüssigkeiten und deren Interaktion mit der Porenwand verknüpft sind. Gerichteter Fluss elastischer Energie parallel und orthogonal zu der Kanalachse, Lokalisierung von Phononen und Beeinflussung der phononischen Bandstruktur bei gleichzeitig präziser Kontrolle des Volumenbruchs der Kanäle (Porosität) werden erörtert. Außerdem ermöglicht die thermische Stabilität von AAO ein temperaturabhängiges Schalten phononischer Eigenschaften infolge temperaturinduzierter Phasenübergänge in den Nanoporen. In monokristallinen zweidimensionalen phononischen AAO Kristallen unterscheiden sich die Dispersionsrelationen empfindlich entlang zweier hoch symmetrischer Richtungen in der Brillouinzone, abhängig davon, ob die Poren leer oder gefüllt sind. Alle experimentellen Dispersionsrelationen werden unter Zuhilfenahme theoretische Ergebnisse durch finite Elemente Analyse (FDTD) gedeutet. Die Zuordnung der Verschiebungsfelder der elastischen Wellen erklärt die Natur aller phononischen Moden.
Resumo:
This work presents algorithms for the calculation of the electrostatic interaction in partially periodic systems. The framework for these algorithms is provided by the simulation package ESPResSo, of which the author was one of the main developers. The prominent features of the program are listed and the internal structure is described. In the following, algorithms for the calculation of the Coulomb sum in three dimensionally periodic systems are described. These methods are the foundations for the algorithms for partially periodic systems presented in this work. Starting from the MMM2D method for systems with one non-periodic coordinate, the ELC method for these systems is developed. This method consists of a correction term which allows to use methods for three dimensional periodicity also for the case of two periodic coordinates. The computation time of this correction term is neglible for large numbers of particles. The performance of MMM2D and ELC are demonstrated by results from the implementations contained in ESPResSo. It is also discussed, how different dielectric constants inside and outside of the simulation box can be realized. For systems with one periodic coordinate, the MMM1D method is derived from the MMM2D method. This method is applied to the problem of the attraction of like-charged rods in the presence of counterions, and results of the strong coupling theory for the equilibrium distance of the rods at infinite counterion-coupling are checked against results from computer simulations. The degree of agreement between the simulations at finite coupling and the theory can be characterized by a single parameter gamma_RB. In the special case of T=0, one finds under certain circumstances flat configurations, in which all charges are located in the rod-rod plane. The energetically optimal configuration and its stability are determined analytically, which depends on only one parameter gamma_z, similar to gamma_RB. These findings are in good agreement with results from computer simulations.
Resumo:
Let k := bar{F}_p for p > 2, W_n(k) := W(k)/p^n and X_n be a projective smooth W_n(k)-scheme which is W_{n+1}(k)-liftable. For all n > 1, we construct explicitly a functor, which we call the inverse Cartier functor, from a subcategory of Higgs bundles over X_n to a subcategory of flat Bundles over X_n. Then we introduce the notion of periodic Higgs-de Rham flows and show that a periodic Higgs-de Rham flow is equivalent to a Fontaine-Faltings module. Together with a p-adic analogue of Riemann-Hilbert correspondence established by Faltings, we obtain a coarse p-adic Simpson correspondence.