9 resultados para Particle and pore radii distributions
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
- ZUSAMMENFASSUNG:Die vorliegende Dissertation befasst sich mit der Bestimmung der chemischen und physikalischen Eigenschaften von Aerosolpartikeln im Amazonasbecken, die während Zeiten mit Biomasseverbrennung und bei Hintergrundbedingungen bestimmt wurden. Die Messungen wurden während zwei Kampagnen im Rahmen des europäischen Beitrags zum LBA-EUSTACH Experiment in Amazonien. Die Daten umfassen Messungen der Anzahlkonzentrationen, Größenverteilungen, optischen Eigenschaften sowie Elementzusammensetzungen und Kohlenstoffgehalte der gesammelten Aerosole. Die Zusammensetzung des Aerosols wies auf folgende drei Quellen hin: natürlichen biogenen, Mineralstaub, und pyrogenes Aerosol. Aller drei Komponenten trugen signifikant zur Extinktion des Sonnenlichts bei. Insgesamt ergab sich eine Steigerung der Meßwerte um ca. das Zehnfache während der Trockenzeit im Vergleich zur Regenzeit, was auf eine massive Einbringung von Rauchpartikeln im Submikrometerbereich in die Atmosphäre während der Trockenzeit zurückzuführen ist. Dementsprechend sank die Einzelstreualbedo von ca. 0,97 auf 0,91. Der Brechungsindex der Aerosolpartikel wurde mit einer neuen iterative Methoden, basierend auf der Mie-Theorie berechnet. Es ergaben sich durchschnittliche Werte von 1,42 0,006i für die Regenzeit und 1,41 0,013i für die Trockenperiode. Weitere klimatisch relevante Parameterergaben für Hintergrundaerosole und für Aerosole aus Biomasseverbrennung folgende Werte: Asymmetrieparameter von 0,63 ± 0,02 bzw. 0,70 ± 0,03 und Rückstreuungsverhältnisse von 0,12 ± 0,01 bzw. 0,08 ± 0,01. Diese Veränderungen haben das Potential, das regionale und globale Klima über die Variierung der Extinktion der Sonneneinstrahlung als auch der Wolkeneigenschaften zu beeinflussen.
Resumo:
In der Erdöl– und Gasindustrie sind bildgebende Verfahren und Simulationen auf der Porenskala im Begriff Routineanwendungen zu werden. Ihr weiteres Potential lässt sich im Umweltbereich anwenden, wie z.B. für den Transport und Verbleib von Schadstoffen im Untergrund, die Speicherung von Kohlendioxid und dem natürlichen Abbau von Schadstoffen in Böden. Mit der Röntgen-Computertomografie (XCT) steht ein zerstörungsfreies 3D bildgebendes Verfahren zur Verfügung, das auch häufig für die Untersuchung der internen Struktur geologischer Proben herangezogen wird. Das erste Ziel dieser Dissertation war die Implementierung einer Bildverarbeitungstechnik, die die Strahlenaufhärtung der Röntgen-Computertomografie beseitigt und den Segmentierungsprozess dessen Daten vereinfacht. Das zweite Ziel dieser Arbeit untersuchte die kombinierten Effekte von Porenraumcharakteristika, Porentortuosität, sowie die Strömungssimulation und Transportmodellierung in Porenräumen mit der Gitter-Boltzmann-Methode. In einer zylindrischen geologischen Probe war die Position jeder Phase auf Grundlage der Beobachtung durch das Vorhandensein der Strahlenaufhärtung in den rekonstruierten Bildern, das eine radiale Funktion vom Probenrand zum Zentrum darstellt, extrahierbar und die unterschiedlichen Phasen ließen sich automatisch segmentieren. Weiterhin wurden Strahlungsaufhärtungeffekte von beliebig geformten Objekten durch einen Oberflächenanpassungsalgorithmus korrigiert. Die Methode der „least square support vector machine” (LSSVM) ist durch einen modularen Aufbau charakterisiert und ist sehr gut für die Erkennung und Klassifizierung von Mustern geeignet. Aus diesem Grund wurde die Methode der LSSVM als pixelbasierte Klassifikationsmethode implementiert. Dieser Algorithmus ist in der Lage komplexe geologische Proben korrekt zu klassifizieren, benötigt für den Fall aber längere Rechenzeiten, so dass mehrdimensionale Trainingsdatensätze verwendet werden müssen. Die Dynamik von den unmischbaren Phasen Luft und Wasser wird durch eine Kombination von Porenmorphologie und Gitter Boltzmann Methode für Drainage und Imbibition Prozessen in 3D Datensätzen von Böden, die durch synchrotron-basierte XCT gewonnen wurden, untersucht. Obwohl die Porenmorphologie eine einfache Methode ist Kugeln in den verfügbaren Porenraum einzupassen, kann sie dennoch die komplexe kapillare Hysterese als eine Funktion der Wassersättigung erklären. Eine Hysterese ist für den Kapillardruck und die hydraulische Leitfähigkeit beobachtet worden, welche durch die hauptsächlich verbundenen Porennetzwerke und der verfügbaren Porenraumgrößenverteilung verursacht sind. Die hydraulische Konduktivität ist eine Funktion des Wassersättigungslevels und wird mit einer makroskopischen Berechnung empirischer Modelle verglichen. Die Daten stimmen vor allem für hohe Wassersättigungen gut überein. Um die Gegenwart von Krankheitserregern im Grundwasser und Abwässern vorhersagen zu können, wurde in einem Bodenaggregat der Einfluss von Korngröße, Porengeometrie und Fluidflussgeschwindigkeit z.B. mit dem Mikroorganismus Escherichia coli studiert. Die asymmetrischen und langschweifigen Durchbruchskurven, besonders bei höheren Wassersättigungen, wurden durch dispersiven Transport aufgrund des verbundenen Porennetzwerks und durch die Heterogenität des Strömungsfeldes verursacht. Es wurde beobachtet, dass die biokolloidale Verweilzeit eine Funktion des Druckgradienten als auch der Kolloidgröße ist. Unsere Modellierungsergebnisse stimmen sehr gut mit den bereits veröffentlichten Daten überein.
Resumo:
Überkritisches Kohlendioxid (CO2) ist für die Polymerisation von besonderem Interesse. Die Dispersionspolymerisation von N-Vinylpyrrolidon (VP) wurde mit Polystyrol-Polydimethylsiloxan Diblockcopolymeren (PS-b-PDMS) in diesem Medium durchgeführt. Hierfür wurde ein neues Hochdrucklabor eingerichtet, eine Sichtzelle und eine neuartige Lichtstreuzelle konstruiert. Für die Durchführung von Lichtstreuexperimenten wurde der Brechungs-index von CO2 bis zu hohen Dichten an einer Reflexionsapparatur bestimmt. Mittels dynamischen Lichtstreumessungen an Polydimethylsiloxan (PDMS) in überkritischem CO2 wurden unter den untersuchten Bedingungen ein Radius bestimmt, wie er für ungestörte Knäueldimensionen erwartet wurde. Das PS-b-PDMS wurde mittels anionischer Polymerisation mit verschiedenen Blocklängen und sehr engen Molekulargewichtsverteilungen synthetisiert. Das Phasenverhalten von PS-b-PDMS wurde in überkritischem CO2 visuell und in einer VP/CO2-Mischung mittels Turbidimetrie untersucht. Das Monomer wirkt als Co-Solvens für den PDMS-Block des Stabilisators. Bei einer Konzentration von ca. 1 Gew.-% PS-b-PDMS (pro Monomer) in CO2 bei 38 MPa und 80°C wurden sphärische ca. 1µm große PVP-Partikeln synthetisiert. PS-b-PDMS ist unter diesen Bedingungen ein geeigneter Stabilisator für die Polymerisation von VP in überkritischem CO2. Bei Konzentrationen von mehr als ca. 5 Gew.-% PS-b-PDMS wurden agglomerierte Partikeln beobachtet. Die Kinetik der Partikelentstehung wurde turbidimetrisch untersucht. Bereits in der frühen Phase der Polymerisation wurde eine anwachsende Partikelgröße gefunden.
Resumo:
Membranen spielen eine essentielle Rolle bei vielen wichtigen zellulären Prozessen. Sie ermöglichen die Erzeugung von chemischen Gradienten zwischen dem Zellinneren und der Umgebung. Die Zellmembran übernimmt wesentliche Aufgaben bei der intra- und extrazellulären Signalweiterleitung und der Adhäsion an Oberflächen. Durch Prozesse wie Endozytose und Exozytose werden Stoffe in oder aus der Zelle transportiert, eingehüllt in Vesikel, welche aus der Zellmembran geformt werden. Zusätzlich bietet sie auch Schutz für das Zellinnere. Der Hauptbestandteil einer Zellmembran ist die Lipiddoppelschicht, eine zweidimensionale fluide Matrix mit einer heterogenen Zusammensetzung aus unterschiedlichen Lipiden. In dieser Matrix befinden sich weitere Bausteine, wie z.B. Proteine. An der Innenseite der Zelle ist die Membran über Ankerproteine an das Zytoskelett gekoppelt. Dieses Polymernetzwerk erhöht unter anderem die Stabilität, beeinflusst die Form der Zelle und übernimmt Funktionenrnbei der Zellbewegung. Zellmembranen sind keine homogenen Strukturen, je nach Funktion sind unterschiedliche Lipide und Proteine in mikrsokopischen Domänen angereichert.Um die grundlegenden mechanischen Eigenschaften der Zellmembran zu verstehen wurde im Rahmen dieser Arbeit das Modellsystem der porenüberspannenden Membranen verwendet.Die Entwicklung der porenüberspannenden Membranen ermöglicht die Untersuchung von mechanischen Eigenschaften von Membranen im mikro- bis nanoskopischen Bereich mit rasterkraftmikroskopischen Methoden. Hierbei bestimmen Porosität und Porengröße des Substrates die räumliche Auflösung, mit welcher die mechanischen Parameter untersucht werdenrnkönnen. Porenüberspannende Lipiddoppelschichten und Zellmembranen auf neuartigen porösen Siliziumsubstraten mit Porenradien von 225 nm bis 600 nm und Porositäten bis zu 30% wurden untersucht. Es wird ein Weg zu einer umfassenden theoretischen Modellierung der lokalen Indentationsexperimente und der Bestimmung der dominierenden energetischen Beiträge in der Mechanik von porenüberspannenden Membranen aufgezeigt. Porenüberspannende Membranen zeigen eine linear ansteigende Kraft mit zunehmender Indentationstiefe. Durch Untersuchung verschiedener Oberflächen, Porengrößen und Membranen unterschiedlicher Zusammensetzung war es für freistehende Lipiddoppelschichten möglich, den Einfluss der Oberflächeneigenschaften und Geometrie des Substrates, sowie der Membranphase und des Lösungsmittels auf die mechanischen Eigenschaften zu bestimmen. Es ist möglich, die experimentellen Daten mit einem theoretischen Modell zu beschreiben. Hierbei werden Parameter wie die laterale Spannung und das Biegemodul der Membran bestimmt. In Abhängigkeit der Substrateigenschaften wurden für freitragende Lipiddoppelschichten laterale Spannungen von 150 μN/m bis zu 31 mN/m gefunden für Biegemodulde zwischen 10^(−19) J bis 10^(−18) J. Durch Kraft-Indentations-Experimente an porenüberspannenden Zellmembranen wurde ein Vergleich zwischen dem Modell der freistehenden Lipiddoppelschichten und nativen Membranen herbeigeführt. Die lateralen Spannungen für native freitragende Membranen wurden zu 50 μN/m bestimmt. Weiterhin konnte der Einfluss des Zytoskeletts und der extrazellulä-rnren Matrix auf die mechanischen Eigenschaften bestimmt und innerhalb eines basolateralen Zellmembranfragments kartiert werden, wobei die Periodizität und der Porendurchmesser des Substrates das räumliche Auflösungsvermögen bestimmen. Durch Fixierung der freistehenden Zellmembran wurde das Biegemodul der Membran um bis zu einem Faktor 10 erhöht. Diese Arbeit zeigt wie lokal aufgelöste, mechanische Eigenschaften mittels des Modellsystems der porenüberspannenden Membranen gemessen und quantifiziert werden können. Weiterhin werden die dominierenden energetischen Einflüsse diskutiert, und eine Vergleichbarkeit zurnnatürlichen Membranen hergestellt.rn
Resumo:
The electromagnetic form factors of the proton are fundamental quantities sensitive to the distribution of charge and magnetization inside the proton. Precise knowledge of the form factors, in particular of the charge and magnetization radii provide strong tests for theory in the non-perturbative regime of QCD. However, the existing data at Q^2 below 1 (GeV/c)^2 are not precise enough for a hard test of theoretical predictions.rnrnFor a more precise determination of the form factors, within this work more than 1400 cross sections of the reaction H(e,e′)p were measured at the Mainz Microtron MAMI using the 3-spectrometer-facility of the A1-collaboration. The data were taken in three periods in the years 2006 and 2007 using beam energies of 180, 315, 450, 585, 720 and 855 MeV. They cover the Q^2 region from 0.004 to 1 (GeV/c)^2 with counting rate uncertainties below 0.2% for most of the data points. The relative luminosity of the measurements was determined using one of the spectrometers as a luminosity monitor. The overlapping acceptances of the measurements maximize the internal redundancy of the data and allow, together with several additions to the standard experimental setup, for tight control of systematic uncertainties.rnTo account for the radiative processes, an event generator was developed and implemented in the simulation package of the analysis software which works without peaking approximation by explicitly calculating the Bethe-Heitler and Born Feynman diagrams for each event.rnTo separate the form factors and to determine the radii, the data were analyzed by fitting a wide selection of form factor models directly to the measured cross sections. These fits also determined the absolute normalization of the different data subsets. The validity of this method was tested with extensive simulations. The results were compared to an extraction via the standard Rosenbluth technique.rnrnThe dip structure in G_E that was seen in the analysis of the previous world data shows up in a modified form. When compared to the standard-dipole form factor as a smooth curve, the extracted G_E exhibits a strong change of the slope around 0.1 (GeV/c)^2, and in the magnetic form factor a dip around 0.2 (GeV/c)^2 is found. This may be taken as indications for a pion cloud. For higher Q^2, the fits yield larger values for G_M than previous measurements, in agreement with form factor ratios from recent precise polarized measurements in the Q2 region up to 0.6 (GeV/c)^2.rnrnThe charge and magnetic rms radii are determined as rn⟨r_e⟩=0.879 ± 0.005(stat.) ± 0.004(syst.) ± 0.002(model) ± 0.004(group) fm,rn⟨r_m⟩=0.777 ± 0.013(stat.) ± 0.009(syst.) ± 0.005(model) ± 0.002(group) fm.rnThis charge radius is significantly larger than theoretical predictions and than the radius of the standard dipole. However, it is in agreement with earlier results measured at the Mainz linear accelerator and with determinations from Hydrogen Lamb shift measurements. The extracted magnetic radius is smaller than previous determinations and than the standard-dipole value.
Resumo:
The dominant process in hard proton-proton collisions is the production of hadronic jets.rnThese sprays of particles are produced by colored partons, which are struck out of their confinement within the proton.rnPrevious measurements of inclusive jet cross sections have provided valuable information for the determination of parton density functions and allow for stringent tests of perturbative QCD at the highest accessible energies.rnrnThis thesis will present a measurement of inclusive jet cross sections in proton-proton collisions using the ATLAS detector at the LHC at a center-of-mass energy of 7 TeV.rnJets are identified using the anti-kt algorithm and jet radii of R=0.6 and R=0.4.rnThey are calibrated using a dedicated pT and eta dependent jet calibration scheme.rnThe cross sections are measured for 40 GeV < pT <= 1 TeV and |y| < 2.8 in four bins of absolute rapidity, using data recorded in 2010 corresponding to an integrated luminosity of 3 pb^-1.rnThe data is fully corrected for detector effects and compared to theoretical predictions calculated at next-to-leading order including non-perturbative effects.rnThe theoretical predictions are found to agree with data within the experimental and theoretic uncertainties.rnrnThe ratio of cross sections for R=0.4 and R=0.6 is measured, exploiting the significant correlations of the systematic uncertainties, and is compared to recently developed theoretical predictions.rnThe underlying event can be characterized by the amount of transverse momentum per unit rapidity and azimuth, called rhoue.rnUsing analytical approaches to the calculation of non-perturbative corrections to jets, rhoue at the LHC is estimated using the ratio measurement.rnA feasibility study of a combined measurement of rhoue and the average strong coupling in the non-perturbative regime alpha_0 is presented and proposals for future jet measurements at the LHC are made.
Resumo:
Ziel dieser Arbeit war der Aufbau und Einsatz des Atmosphärischen chemischen Ionisations-Massenspektrometers AIMS für boden- und flugzeuggetragene Messungen von salpetriger Säure (HONO). Für das Massenspektrometer wurden eine mit Gleichspannung betriebene Gasentladungsionenquelle und ein spezielles Druckregelventil entwickelt. Während der Instrumentenvergleichskampagne FIONA (Formal Intercomparisons of Observations of Nitrous Acid) an einer Atmosphären-Simulationskammer in Valencia (Spanien) wurde AIMS für HONO kalibriert und erstmals eingesetzt. In verschiedenen Experimenten wurden HONO-Mischungsverhältnisse zwischen 100 pmol/mol und 25 nmol/mol erzeugt und mit AIMS interferenzfrei gemessen. Innerhalb der Messunsicherheit von ±20% stimmen die massenspektrometrischen Messungen gut mit den Methoden der Differenziellen Optischen Absorptions-Spektrometrie und der Long Path Absorption Photometrie überein. Die Massenspektrometrie kann somit zum schnellen und sensitiven Nachweis von HONO in verschmutzter Stadtluft und in Abgasfahnen genutzt werden.rnErste flugzeuggetragene Messungen von HONO mit AIMS wurden 2011 bei der Messkampagne CONCERT (Contrail and Cirrus Experiment) auf dem DLR Forschungsflugzeug Falcon durchgeführt. Hierbei konnte eine Nachweisgrenze von < 10 pmol/mol (3σ, 1s) erreicht werden. Bei Verfolgungsflügen wurden im jungen Abgasstrahl von Passagierflugzeugen molare HONO zu Stickoxid-Verhältnisse (HONO/NO) von 2.0 bis 2.5% gemessen. HONO wird im Triebwerk durch die Reaktion von NO mit OH gebildet. Ein gemessener abnehmender Trend der HONO/NO Verhältnisse mit zunehmendem Stickoxid-Emissionsindex wurde bestätigt und weist auf eine OH Limitierung im jungen Abgasstrahl hin.rnNeben den massenspektrometrischen Messungen wurden Flugzeugmessungen der Partikelsonde Forward Scattering Spectrometer Probe FSSP-300 in jungen Kondensstreifen ausgewertet und analysiert. Aus den gemessenen Partikelgrößenverteilungen wurden Extinktions- und optische Tiefe-Verteilungen abgeleitet und für die Untersuchung verschiedener wissenschaftlicher Fragestellungen, z.B. bezüglich der Partikelform in jungen Kondensstreifen und ihrer Klimawirkung, zur Verfügung gestellt. Im Rahmen dieser Arbeit wurde der Einfluss des Flugzeug- und Triebwerktyps auf mikrophysikalische und optische Eigenschaften von Kondensstreifen untersucht. Unter ähnlichen meteorologischen Bedingungen bezüglich Feuchte, Temperatur und stabiler thermischer Schichtung wurden 2 Minuten alte Kondensstreifen der Passagierflugzeuge vom Typ A319-111, A340-311 und A380-841 verglichen. Im Rahmen der Messunsicherheit wurde keine Änderung des Effektivdurchmessers der Partikelgrößenverteilungen gefunden. Hingegen nehmen mit zunehmendem Flugzeuggewicht die Partikelanzahldichte (162 bis 235 cm-3), die Extinktion (2.1 bis 3.2 km-1), die Absinktiefe des Kondensstreifens (120 bis 290 m) und somit die optische Tiefe der Kondensstreifen (0.25 bis 0.94) zu. Der gemessene Trend wurde durch Vergleich mit zwei unabhängigen Kondensstreifen-Modellen bestätigt. Mit den Messungen wurde eine lineare Abhängigkeit der totalen Extinktion (Extinktion mal Querschnittsfläche des Kondensstreifens) vom Treibstoffverbrauch pro Flugstrecke gefunden und bestätigt.
Resumo:
Natural and anthropogenic emissions of gaseous and particulate matter affect the chemical composition of the atmosphere, impact visibility, air quality, clouds and climate. Concerning climate, a comprehensive characterization of the emergence, composition and transformation of aerosol particles is relevant as their influence on the radiation budget is still rarely understood. Regarding air quality and therefore human health, the formation of atmospheric aerosol particles is of particular importance as freshly formed, small particles penetrate into the human alveolar region and can deposit. Additionally, due to the long residence times of aerosol particles in the atmosphere it is crucial to examine their chemical and physical characteristics.This cumulative dissertation deals with stationary measurements of particles, trace gases and meteorological parameters during the DOMINO (Diel Oxidant Mechanism In relation to Nitrogen Oxide) campaign at the southwest coast of Spain in November/December 2008 and the ship emission campaign on the banks of the Elbe in Freiburg/Elbe in April 2011. Measurements were performed using the Mobile research Laboratory “MoLa” which is equipped with state-of-the-art aerosol particle and trace gas instruments as well as a meteorological station.
Resumo:
This study aims at a comprehensive understanding of the effects of aerosol-cloud interactions and their effects on cloud properties and climate using the chemistry-climate model EMAC. In this study, CCN activation is regarded as the dominant driver in aerosol-cloud feedback loops in warm clouds. The CCN activation is calculated prognostically using two different cloud droplet nucleation parameterizations, the STN and HYB CDN schemes. Both CDN schemes account for size and chemistry effects on the droplet formation based on the same aerosol properties. The calculation of the solute effect (hygroscopicity) is the main difference between the CDN schemes. The kappa-method is for the first time incorporated into Abdul-Razzak and Ghan activation scheme (ARG) to calculate hygroscopicity and critical supersaturation of aerosols (HYB), and the performance of the modied scheme is compared with the osmotic coefficient model (STN), which is the standard in the ARG scheme. Reference simulations (REF) with the prescribed cloud droplet number concentration have also been carried out in order to understand the effects of aerosol-cloud feedbacks. In addition, since the calculated cloud coverage is an important determinant of cloud radiative effects and is influencing the nucleation process two cloud cover parameterizations (i.e., a relative humidity threshold; RH-CLC and a statistical cloud cover scheme; ST-CLC) have been examined together with the CDN schemes, and their effects on the simulated cloud properties and relevant climate parameters have been investigated. The distinct cloud droplet spectra show strong sensitivity to aerosol composition effects on cloud droplet formation in all particle sizes, especially for the Aitken mode. As Aitken particles are the major component of the total aerosol number concentration and CCN, and are most sensitive to aerosol chemical composition effect (solute effect) on droplet formation, the activation of Aitken particles strongly contribute to total cloud droplet formation and thereby providing different cloud droplet spectra. These different spectra influence cloud structure, cloud properties, and climate, and show regionally varying sensitivity to meteorological and geographical condition as well as the spatiotemporal aerosol properties (i.e., particle size, number, and composition). The changes responding to different CDN schemes are more pronounced at lower altitudes than higher altitudes. Among regions, the subarctic regions show the strongest changes, as the lower surface temperature amplifies the effects of the activated aerosols; in contrast, the Sahara desert, where is an extremely dry area, is less influenced by changes in CCN number concentration. The aerosol-cloud coupling effects have been examined by comparing the prognostic CDN simulations (STN, HYB) with the reference simulation (REF). Most pronounced effects are found in the cloud droplet number concentration, cloud water distribution, and cloud radiative effect. The aerosol-cloud coupling generally increases cloud droplet number concentration; this decreases the efficiency of the formation of weak stratiform precipitation, and increases the cloud water loading. These large-scale changes lead to larger cloud cover and longer cloud lifetime, and contribute to high optical thickness and strong cloud cooling effects. This cools the Earth's surface, increases atmospheric stability, and reduces convective activity. These changes corresponding to aerosol-cloud feedbacks are also differently simulated depending on the cloud cover scheme. The ST-CLC scheme is more sensitive to aerosol-cloud coupling, since this scheme uses a tighter linkage of local dynamics and cloud water distributions in cloud formation process than the RH-CLC scheme. For the calculated total cloud cover, the RH-CLC scheme simulates relatively similar pattern to observations than the ST-CLC scheme does, but the overall properties (e.g., total cloud cover, cloud water content) in the RH simulations are overestimated, particularly over ocean. This is mainly originated from the difference in simulated skewness in each scheme: the RH simulations calculate negatively skewed distributions of cloud cover and relevant cloud water, which is similar to that of the observations, while the ST simulations yield positively skewed distributions resulting in lower mean values than the RH-CLC scheme does. The underestimation of total cloud cover over ocean, particularly over the intertropical convergence zone (ITCZ) relates to systematic defficiency of the prognostic calculation of skewness in the current set-ups of the ST-CLC scheme.rnOverall, the current EMAC model set-ups perform better over continents for all combinations of the cloud droplet nucleation and cloud cover schemes. To consider aerosol-cloud feedbacks, the HYB scheme is a better method for predicting cloud and climate parameters for both cloud cover schemes than the STN scheme. The RH-CLC scheme offers a better simulation of total cloud cover and the relevant parameters with the HYB scheme and single-moment microphysics (REF) than the ST-CLC does, but is not very sensitive to aerosol-cloud interactions.