4 resultados para Parallax motion

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In der vorliegenden Dissertation wird ein Körpergrößengedächtnis untersucht. Es wird dargestellt, wie diese Information über die Reichweite der Fliege beim Lückenklettern unter kotrollierten Umweltbedingungen erworben und prozessiert wird. Zusätzlich wird geklärt, welche biochemischen Signale benötigt werden, um daraus ein lang anhalten-des Gedächtnis zu formen. Adulte Fliegen sind in der Lage, ihre Körperreichweite zu lernen. Naive Fliegen, die in der Dunkelheit gehalten wurden, versuchen erfolglos, zu breite Lücken zu überqueren, während visuell erfahrene Fliegen die Kletterversuche an ihre Körpergröße anpassen. Erfahrene kleine Fliegen scheinen Kenntnis ihres Nachteils zu haben. Sie kehren an Lückenbreiten um, welche ihre größeren Artgenos-sen durchaus noch versuchen. Die Taufliegen lernen die größenabhängige Reichweite über die visuelle Rückmeldung während des Laufens (aus Parallaxenbewegung). Da-bei reichen 15 min in strukturierter, heller Umgebung aus. Es gibt keinen festgelegten Beginn der sensiblen Phase. Nach 2 h ist das Gedächtnis jedoch konsolidiert und kann durch Stress nicht mehr zerstört oder durch sensorische Eingänge verändert werden. Dunkel aufgezogene Fliegen wurden ausgewählten Streifenmustern mit spezifischen Raumfrequenzen ausgesetzt. Nur die Insekten, welche mit einem als „optimal“ klassi-fizierten Muster visuell stimuliert wurden, sind in der Lage, die Körperreichweite einzu-schätzen, indem die durchschnittliche Schrittlänge in Verbindung mit der visuellen Wahrnehmung gebracht wird. Überraschenderweise ist es sogar mittels partieller Kompensation der Parallaxen möglich, naive Fliegen so zu trainieren, dass sie sich wie kleinere Exemplare verhalten. Da die Experimente ein Erlernen der Körperreich-weite vermuten lassen, wurden lernmutante Stämme beim Lückenüberwinden getes-tet. Sowohl die Ergebnisse von rut1- und dnc1-Mutanten, als auch das defizitäre Klet-tern von oc1-Fliegen ließ eine Beteiligung der cAMP-abhängigen Lernkaskade in der Protocerebralbrücke (PB) vermuten. Rettungsexperimente der rut1- und dnc1-Hinter-gründe kartierten das Gedächtnis in unterschiedliche Neuronengruppen der PB, wel-che auch für die visuelle Ausrichtung des Kletterns benötigt werden. Erstaunlicher-weise haben laterale lokale PB-Neurone und PFN-Neurone (Projektion von der PB über den fächerförmigen Körper zu den Noduli) verschiedene Erfordernisse für cAMP-Signale. Zusammenfassend weisen die Ergebnisse darauf hin, dass hohe Mengen an cAMP/PKA-Signalen in den latero-lateralen Elementen der PB benötigt werden, wäh-rend kolumnäre PFN-Neurone geringe oder keine Mengen an cAMP/PKA erfordern. Das Körperreichweitengedächtnis ist vermutlich das am längsten andauernde Ge-dächtnis in Drosophila. Wenn es erst einmal konsolidiert ist hält es länger als drei Wo-chen.rnAußerdem kann die Fruchtliege Drosophila melanogaster trainiert werden, die kom-plexe motorische Aufgabe des Lückenkletterns zu optimieren. Die trainierten Fliegen werden erfolgreicher und schneller beim Überqueren von Lücken, welche größer sind als sie selbst. Dabei existiert eine Kurzeitkomponente (STM), die 40 min nach dem ersten Training anhält. Nach weiteren vier Trainingsdurchläufen im Abstand von 20 min wird ein Langzeitgedächtnis (LTM) zum Folgetag geformt. Analysen mit Mutati-onslinien wiesen eine Beteiligung der cAMP-abhängigen Lernkaskade an dieser Ge-dächtnisform auf. Rettungsexperimente des rut2080-Hintergrunds kartierten sowohl das STM, als auch das LTM in PFN-Neuronen. Das STM kann aber ebenso in den alpha- und beta- Loben der Pilzkörper gerettet werden.rnLetztendlich sind wildtypische Fliegen sogar in der Lage, sich an einen Verlust eines Mittelbeintarsuses und dem einhergehenden Fehlen des Adhäsionsorgans am Tarsusende anzupassen. Das Klettern wird zwar sofort schlechter, erholt sich aber bis zum Folgetag wieder auf ein normales Niveau. Dieser neue Zustand erfordert ein Ge-dächtnis für die physischen Möglichkeiten, die nur durch plastische Veränderungen im Nervensystem des Insekts erreicht werden können.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Frage, wie es zur visuellen Wahrnehmung räumlicher Tiefe kommt, wenn das Retinabild nur zweidimensional ist, gehört zu den grundlegenden Proble-men der Hirnforschung. Für Tiere, die sich aktiv in ihrer Umgebung bewegen, herrscht ein großer Selektionsdruck Entfernungen und Größen richtig einzu-schätzen. Ziel der vorliegenden Arbeit war es, herauszufinden, ob und wie gut Goldfische Objekte allein aufgrund des Abstandes unterscheiden können und woraus sie Information über den Abstand gewinnen. Hierzu wurde ein Ver-suchsaufbau mit homogen weißem Hintergrund entworfen, in dem die Akkom-modation als Entfernungsinformationen verwendet werden kann, weniger je-doch die Bewegungsparallaxe. Die Goldfische lernten durch operante Konditio-nierung einen Stimulus (schwarze Kreisscheibe) in einem bestimmten Abstand zu wählen, während ein anderer, gleichgroßer Stimulus so entfernt wie möglich präsentiert wurde. Der Abstand zwischen den Stimuli wurde dann verringert, bis die Goldfische keine sichere Wahl für den Dressurstimulus mehr treffen konnten. Die Unterscheidungsleistung der Goldfische wurde mit zunehmendem Abstand des Dressurstimulus immer geringer. Eine Wiederholung der Versuche mit unscharfen Stimu¬lus¬kon¬turen brachte keine Verschlechterung in der Unter-scheidung, was Akkommodation wenig wahrscheinlich macht. Um die Größen-konstanz beim Goldfisch zu testen, wurden die Durchmesser der unterschiedlich entfernten Stimuli so angepasst, dass sie für den Goldfisch die gleiche Retina-bildgröße hatten. Unter diesen Bedingungen waren die Goldfische nicht in der Lage verschieden entfernte Stimuli zu unterscheiden und somit Größenkonstanz zu leisten. Es fand demnach keine echte Entfernungsbestimmung oder Tiefen-wahrneh¬mung statt. Die Unterscheidung der verschieden entfernten Stimuli erfolgte allein durch deren Abbildungsgröße auf der Retina. Dass die Goldfische bei diesem Experiment nicht akkommodieren, wurde durch Infrarot-Photoretinoskopie gezeigt. Somit lässt sich Akkommodation für die Entfer-nungsbestimmung in diesen Versuchen ausschließen. Für diese Leistung und die Größenkonstanz ist vermutlich die Bewegungsparallaxe entscheidend.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vielen Bereichen der industriellen Fertigung, wie zum Beispiel in der Automobilindustrie, wer- den digitale Versuchsmodelle (sog. digital mock-ups) eingesetzt, um die Entwicklung komplexer Maschinen m ̈oglichst gut durch Computersysteme unterstu ̈tzen zu k ̈onnen. Hierbei spielen Be- wegungsplanungsalgorithmen eine wichtige Rolle, um zu gew ̈ahrleisten, dass diese digitalen Pro- totypen auch kollisionsfrei zusammengesetzt werden k ̈onnen. In den letzten Jahrzehnten haben sich hier sampling-basierte Verfahren besonders bew ̈ahrt. Diese erzeugen eine große Anzahl von zuf ̈alligen Lagen fu ̈r das ein-/auszubauende Objekt und verwenden einen Kollisionserken- nungsmechanismus, um die einzelnen Lagen auf Gu ̈ltigkeit zu u ̈berpru ̈fen. Daher spielt die Kollisionserkennung eine wesentliche Rolle beim Design effizienter Bewegungsplanungsalgorith- men. Eine Schwierigkeit fu ̈r diese Klasse von Planern stellen sogenannte “narrow passages” dar, schmale Passagen also, die immer dort auftreten, wo die Bewegungsfreiheit der zu planenden Objekte stark eingeschr ̈ankt ist. An solchen Stellen kann es schwierig sein, eine ausreichende Anzahl von kollisionsfreien Samples zu finden. Es ist dann m ̈oglicherweise n ̈otig, ausgeklu ̈geltere Techniken einzusetzen, um eine gute Performance der Algorithmen zu erreichen.rnDie vorliegende Arbeit gliedert sich in zwei Teile: Im ersten Teil untersuchen wir parallele Kollisionserkennungsalgorithmen. Da wir auf eine Anwendung bei sampling-basierten Bewe- gungsplanern abzielen, w ̈ahlen wir hier eine Problemstellung, bei der wir stets die selben zwei Objekte, aber in einer großen Anzahl von unterschiedlichen Lagen auf Kollision testen. Wir im- plementieren und vergleichen verschiedene Verfahren, die auf Hu ̈llk ̈operhierarchien (BVHs) und hierarchische Grids als Beschleunigungsstrukturen zuru ̈ckgreifen. Alle beschriebenen Verfahren wurden auf mehreren CPU-Kernen parallelisiert. Daru ̈ber hinaus vergleichen wir verschiedene CUDA Kernels zur Durchfu ̈hrung BVH-basierter Kollisionstests auf der GPU. Neben einer un- terschiedlichen Verteilung der Arbeit auf die parallelen GPU Threads untersuchen wir hier die Auswirkung verschiedener Speicherzugriffsmuster auf die Performance der resultierenden Algo- rithmen. Weiter stellen wir eine Reihe von approximativen Kollisionstests vor, die auf den beschriebenen Verfahren basieren. Wenn eine geringere Genauigkeit der Tests tolerierbar ist, kann so eine weitere Verbesserung der Performance erzielt werden.rnIm zweiten Teil der Arbeit beschreiben wir einen von uns entworfenen parallelen, sampling- basierten Bewegungsplaner zur Behandlung hochkomplexer Probleme mit mehreren “narrow passages”. Das Verfahren arbeitet in zwei Phasen. Die grundlegende Idee ist hierbei, in der er- sten Planungsphase konzeptionell kleinere Fehler zuzulassen, um die Planungseffizienz zu erh ̈ohen und den resultierenden Pfad dann in einer zweiten Phase zu reparieren. Der hierzu in Phase I eingesetzte Planer basiert auf sogenannten Expansive Space Trees. Zus ̈atzlich haben wir den Planer mit einer Freidru ̈ckoperation ausgestattet, die es erlaubt, kleinere Kollisionen aufzul ̈osen und so die Effizienz in Bereichen mit eingeschr ̈ankter Bewegungsfreiheit zu erh ̈ohen. Optional erlaubt unsere Implementierung den Einsatz von approximativen Kollisionstests. Dies setzt die Genauigkeit der ersten Planungsphase weiter herab, fu ̈hrt aber auch zu einer weiteren Perfor- mancesteigerung. Die aus Phase I resultierenden Bewegungspfade sind dann unter Umst ̈anden nicht komplett kollisionsfrei. Um diese Pfade zu reparieren, haben wir einen neuartigen Pla- nungsalgorithmus entworfen, der lokal beschr ̈ankt auf eine kleine Umgebung um den bestehenden Pfad einen neuen, kollisionsfreien Bewegungspfad plant.rnWir haben den beschriebenen Algorithmus mit einer Klasse von neuen, schwierigen Metall- Puzzlen getestet, die zum Teil mehrere “narrow passages” aufweisen. Unseres Wissens nach ist eine Sammlung vergleichbar komplexer Benchmarks nicht ̈offentlich zug ̈anglich und wir fan- den auch keine Beschreibung von vergleichbar komplexen Benchmarks in der Motion-Planning Literatur.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wird die Theorie der analytischen zweiten Ableitungen für die EOMIP-CCSD-Methode formuliert sowie die durchgeführte Implementierung im Quantenchemieprogramm CFOUR beschrieben. Diese Ableitungen sind von Bedeutung bei der Bestimmung statischer Polarisierbarkeiten und harmonischer Schwingungsfrequenzen und in dieser Arbeit wird die Genauigkeit des EOMIP-CCSD-Ansatzes bei der Berechnung dieser Eigenschaften für verschiedene radikalische Systeme untersucht. Des Weiteren können mit Hilfe der ersten und zweiten Ableitungen vibronische Kopplungsparameter berechnet werden, welche zur Simulation von Molekülspektren in Kombination mit dem Köppel-Domcke-Cederbaum (KDC)-Modell - in der Arbeit am Beispiel des Formyloxyl (HCO2)-Radikals demonstriert - benötigt werden.rnrnDer konzeptionell einfache EOMIP-CC-Ansatz wurde gewählt, da hier die Wellenfunktion eines Radikalsystems ausgehend von einem stabilen geschlossenschaligen Zustand durch die Entfernung eines Elektrons gebildet wird und somit die Problematik der Symmetriebrechung umgangen werden kann. Im Rahmen der Implementierung wurden neue Programmteile zur Lösung der erforderlichen Gleichungen für die gestörten EOMIP-CC-Amplituden und die gestörten Lagrange-Multiplikatoren zeta zum Quantenchemieprogramm CFOUR hinzugefügt. Die unter Verwendung des Programms bestimmten Eigenschaften werden hinsichtlich ihrer Leistungsfähigkeit im Vergleich zu etablierten Methoden wie z.B. CCSD(T) untersucht. Bei der Berechnung von Polarisierbarkeiten und harmonischen Schwingungsfrequenzen liefert die EOMIP-CCSD-Theorie meist gute Resultate, welche nur wenig von den CCSD(T)-Ergebnissen abweichen. Einzig bei der Betrachtung von Radikalen, für die die entsprechenden Anionen nicht stabil sind (z.B. NH2⁻ und CH3⁻), liefert der EOMIP-CCSD-Ansatz aufgrund methodischer Nachteile keine aussagekräftige Beschreibung. rnrnDie Ableitungen der EOMIP-CCSD-Energie lassen sich auch zur Simulation vibronischer Kopplungen innerhalb des KDC-Modells einsetzen.rnZur Kopplung verschiedener radikalischer Zustände in einem solchen Modellpotential spielen vor allem die Ableitungen von Übergangsmatrixelementen eine wichtige Rolle. Diese sogenannten Kopplungskonstanten können in der EOMIP-CC-Theorie besonders leicht definiert und berechnet werden. Bei der Betrachtung des Photoelektronenspektrums von HCO2⁻ werden zwei Alternativen untersucht: Die vertikale Bestimmung an der Gleichgewichtsgeometrie des HCO2⁻-Anions und die Ermittlung adiabatischer Kraftkonstanten an den Gleichgewichtsgeometrien des Radikals. Lediglich das adiabatische Modell liefert bei Beschränkung auf harmonische Kraftkonstanten eine qualitativ sinnvolle Beschreibung des Spektrums. Erweitert man beide Modelle um kubische und quartische Kraftkonstanten, so nähern sich diese einander an und ermöglichen eine vollständige Zuordnung des gemessenen Spektrums innerhalb der ersten 1500 cm⁻¹. Die adiabatische Darstellung erreicht dabei nahezu quantitative Genauigkeit.