6 resultados para PRIMATE RETINA
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Centrine sind Mitglieder einer hoch konservierten Überfamilie von Ca2+-bindenden Proteinen mit EF-Hand Motiven. Bislang sind vier Centrin-Isoformen bei Säugern beschrieben worden, die in diversen Zellen in der Regel mit Centriolen von Centrosomen oder Centrosomen-verwandten Strukturen assoziiert sind. Im Rahmen der vorliegenden Dissertation wurden die vier Centrin-Isoformen bezüglich der Expression in verschiedenen Geweben untersucht. Dabei lag der Hauptfokus auf Untersuchungen der Centrine in den Photorezeptorzellen der Retina. Analysen auf subzellulärer Ebene brachten Klarheit über die differenzielle Lokalisation der verschiedenen Isoformen in der Retina. Mit Hilfe von verschiedenen Methoden konnten Wechselwirkungspartner in der Retina identifiziert werden, die eine Rolle in der visuellen Signaltransduktionskaskade spielen. Dabei könnten Centrine einem Regelmechanismus angehören, der wichtige Translokationsprozesse dieser Proteine regelt. In den Photorezeptorzellen der Säugetierretina werden die vier Isoformen exprimiert, die in den Strukturen des Cilienapparates differenziell lokalisiert sind. Dabei beschränkt sich ihre Lokalisation entweder auf den Basalkörper (Centrin 4), auf das Verbindungscilium (Centrin 1) oder sie sind in beiden Strukturen zu finden (Centrin 2 und 3). In den nicht- Photorezeptorzellen der Retina sind die Isoformen Centrin 2 und 3 zudem an den Centriolen der Centrosomen lokalisiert. In der vorliegenden Arbeit wurde zum ersten Mal gezeigt, dass alle Centrin-Isoformen in ein und derselben Zelle, der Photorezeptorzelle, koexprimiert werden und dabei subzellulär kolokalisiert sind. Im Weiteren konnte die ubiquitäre Expression von Centrin 2 und 3 in allen untersuchten Geweben an Centrosomen bestätigt werden. Centrin 1 und 4 hingegen werden nur in Geweben mit Cilien-tragenden Zellen exprimiert. Die Funktion der Centrine wird nicht nur durch Bindung von Ca2+, sondern auch durch Phosphorylierungen reguliert. Alle Sequenzen der Centrine weisen diverse mögliche Phosphorylierungsstellen für unterschiedliche Proteinkinasen auf. Die Ergebnisse aller durchgeführten in vitro und ex vivo Phosphorylierungs „Assays“ zeigen eine licht-abhängige Phosphorylierung der Centrin-Isoformen in der Retina. Dabei war in der dunkel-adaptierten Retina die Phosphorylierung vor allem von Centrin 1 und 2 erhöht. Weiterführende Experimente mit Kinase-Inhibitoren wiesen darauf hin, dass vor allem die Proteinkinase CKII eine bedeutende Rolle bei der Centrin-Phosphorylierung in der Retina einnimmt. Centrine sind die ersten Cytoskelettkomponenten, deren Phosphorylierungsgrad lichtabhängig moduliert wird. Diese Ergebnisse weisen auf einen Signalweg, der zwischen der visuellen Signaltransduktionskaskade und der Regulation der Centrin-Aktivität vermittelt, hin. Bei der Suche nach Centrin-Bindungspartnern gelang mit Hilfe von Centrin 1 Blot „Overlay Assays“ der Durchbruch. Der neuartige Ansatz zeigte, dass ausschließlich Ca2+-aktiviertes Centrin 1 mit Proteinen aus der Retina interagierte. Nach der Identifikation eines 37 kDa-Proteins als die β-Untereinheit des visuellen G-Proteins Transducin wurden die Untersuchungen auf diesen Interaktionspartner fokussiert. Die Ergebnisse der hier durchgeführten biochemischen und biophysikalischen Protein-Protein Interaktionsexperimente zeigen insgesamt folgendes: ⇒ Alle vier Centrine interagieren mit Transducin, wobei Centrin 3 die geringste Affinität zu Transducin hat. ⇒ Die Assemblierung der Centrin•G-Protein-Komplexe ist strikt Ca2+-abhängig. ⇒ Die Centrine binden sowohl an das isolierte Gtβγ-Heterodimer als auch an den heterotrimeren Gt-holo-Proteinkomplex, nicht aber an Gtα. Die quantitativen immunoelektronenmikroskopischen Analysen zeigen im Weiteren, dass sich die Komplexe aus Transducin und Centrin 1 bis 3 wahrscheinlich in einer Subdomäne des Verbindungsciliums der Photorezeptorzellen ausbilden. Dabei dürfte die Ausbildung der Komplexe an der Regulation der lichtinduzierten Translokation von Transducin zwischen Innen- und Außensegment der Photorezeptorzellen beteiligt sein. Dieser Translokationsmechanismus wird als ein wichtiger Bestandteil der Langzeitadaption der Signaltransduktionskaskade der Säugerretina diskutiert. Der neuartige Regelmechanismus der molekularen Translokationen, in dem Centrine involviert sind, ist außergewöhnlich und dürfte über die speziellen Photorezeptorzellen hinaus von weit reichender Bedeutung sein.
Resumo:
Photorezeptorzellen der Vertebraten sind hoch spezialisierte, visuell sensorische Neurone in der Retina, die die Lichtinformation in ein neuronales Signal umwandeln. Durch ihre Einbindung in die Retina im Gesamtorgan Auge, sind Photorezeptorzellen im Organismus für zellbiologische Analysen, wie beispielsweise unter Einsatz pharmakologischer Substanzen, nur schwer zugänglich. Demgegenüber ist bei der Nutzung von Zellkulturtechniken eine Beeinflussung oder externe Manipulation von Zellen mit geringem Aufwand möglich. Bei Etablierungsversuchen von Primärkulturen von Photorezeptorzellen zeigte sich jedoch, dass diese rasch ihre spezifische Kompartimentierung und das damit verbundene (lichtsensitive) Funktionsvermögen verlieren. Eine Alternative zur Einzelzellkultur bietet die Kultivierung der Retina als organotypisches Gewebe, in der, durch den überlebenswichtigen Kontakt der retinalen Zellen zu einander, deren Morphologie und Funktionsvermögen erhalten bleibt. In der vorliegenden Arbeit konnte durch Optimierung der Kultivierungstechnik erstmals die adulte Retina für mehrere Tage intakt kultiviert und deren Vitalität und physiologische Aktivität nachgewiesen werden. Nach dem Nachweis der Eignung der organotypischen Retinakultur, stand diese nun für zellbiologische Analysen von Photorezeptorzellen zur Verfügung. Die Langzeitadaptation von Photorezeptorzellen geht einher mit der Translokation der Proteine Arrestin und Transducin. Doch sind die zugrunde liegenden molekularen Mechanismen dieser lichtabhängigen molekularen Bewegungen bislang noch nicht verstanden. Im Kontext der Diskussion um Diffusion oder aktivem Transport der genannten Translokationen, wurden in der vorliegenden Arbeit Experimente zur Abhängigkeit vom Cytoskelett durchgeführt. Die Ergebnisse zeigen, dass die gegensätzlichen Translokationen von Arrestin und Transducin während der Dunkeladaptation vom Aktin-, als auch Mikrotubulicytoskelett abhängig sind. Demgegenüber sind es die während der Helladaptation stattfindenden Translokationen nicht. Diese Befunde verweisen damit auf unterschiedliche Mechanismen für die untersuchten molekularen Bewegungen während der Dunkel- und Helladaptation, und das im Falle des Arrestins auch verschieden Mechanismen zusammen oder in einer Abfolge für die Bewegung durch verschiedene Zellkompartimente notwendig sind. Darüber hinaus konnte in der vorliegenden Arbeit die Eignung der Retinakulturtechnik für Gentransfers in retinale Zellen mittels verschiedener Methoden gezeigt werden. Die organotypische Gewebekultur der adulten Retina erweist sich als ein Analysesystem mit dem zellbiologische Untersuchungen an ausdifferenzierten Photorezeptorzellen durchgeführt werden können, die im lebenden Tier, bzw. der Zellkultur nicht möglich sind. Erfolgreiche Pharmakologische Beeinflussung, sowie Gentransfer in Zellen der Retinakultur prädestinieren die Retinakultur für zellbiologische und Proteinfunktionsanalysen. Dabei kann sie ferner als Modellsystem zur Evaluation von Therapiestrategien zu Retinadystrophien dienen und das ohne, oder zumindest in einer Reduktion von Tierversuchen.
Resumo:
Um mit sehr hoher Geschwindigkeit Sinnesreize zur Weiterverarbeitung übertragen zu können, besitzen im Ruhezustand Dauerimpulse liefernde Rezeptorzellen in Sinnesorganen, wie z.B. der Netzhaut (Retina), spezialisierte glutamaterge Synapsen, die durch präsynapti-sche Körperchen (SK) charakterisiert sind, die außerdem nur in Parenchymzellen der Zirbel-drüse vorkommen. SK binden mit hoher Affinität Neurotransmittervesikel und zeigen licht- bzw. reizabhängige morphologische Veränderungen. Sie dienen der Speicherung, eventuell auch dem Transport dieser Vesikel zum Ort der Reizübertragung, der nahen aktiven Zone der Ribbonsynapse. Um Dynamik und Funktion der Zellorganellen zu verstehen, ist es wichtig, ihre genaue Topo-graphie und dreidimensionale (3D) Struktur unter verschiedenen Bedingungen zu kennen. So wurden aus Serienschnitten der Retina und Zirbeldrüse mit Hilfe geeigneter, teils selbst programmierter Software 3D-Rekonstruktionen der SK durchgeführt. Untersucht wurden die ersten und zweiten Synapsen der Sehbahn in Retinae von Mensch, Maus und Ratte, Zapfen-terminale des Hühnchens und SK in Zirbeldrüsen von Ratte, Meerschweinchen und Kaninchen. Analysiert wurde zu verschiedenen Zeitpunkten der Photoperiode oder unter experimentellen Bedingungen entnommenes Frischgewebe sowie Material aus Organkultu-ren. Außerdem wurden SK unter diversen Bedingungen quantifiziert, wobei eine neue Zähl-methode entwickelt wurde, die auf einer Modifikation des Disektors basiert und die Quantifi-zierung auch anderer seltener Ultrastrukturen am Elektronenmikroskop ermöglicht. Im Gegensatz zur etablierten Zählmethode, die die Profilzahl von SK in einer definierten Fläche (PZ) angibt, liefert die vorgestellte Methode die aussagekräftigere Zahl der SK in definierten Volumina und hängt weder von deren Form noch Größe ab. Diverse Kalkulationen zeigten, daß eine Umrechnung von am selben Material gewonnenen PZ in validere Disektor Werte nicht präzise genug möglich ist. Um sinnvolle Aussagen zur Quantität von SK machen zu können, ist es daher erforderlich, die Methode für jedes Tier einer identisch behandelten Gruppe anzuwenden. Es konnte gezeigt werden, daß SK eine konstante Dicke von 35 nm haben. In der Retina sind sie meist nur in einer Ebene C-förmig gebogene Bänder, weshalb sie auch als "synaptic ribbons" bezeichnet werden, oder Platten mit Breite zu Höhe Verhältnissen zwischen 6:1 bis 3:1. Die elektronendichten, unter Normalbedingungen durch regelmäßig polymerisierte Dimere des Hauptproteins RIBEYE pentalamellären SK binden über dünne Proteinbrücken glutamathaltige Neurotransmittervesikel. Ihre untere lange schmale Kante ist über feines elektronendichtes Material an einem, als arciform density (ad) bezeichneten Plaque der Zell-membran verankert, der die Form einer gebogenen Rinne hat. Die zumeist senkrecht darauf stehenden SK zeigen an ihrer membranfernen langen Kante zu Beginn der Lichtphase, ins-besondere aber unter Dauerlicht partiell verdickte Ränder, die auf An- bzw. Abbauvorgänge hinweisen. Diese Veränderungen waren nur in Stäbchenterminalen und Pinealozyten in Ver-bindung mit dem Auftreten kleinerer klumpiger bis kugelförmiger SK nachweisbar und zeig-ten sich in den Schnitten als runde oder irreguläre Profile, die dann neben den "üblichen" stabförmigen SK-Anschnitten vorlagen. Die 3D-Rekonstruktion von Stäbchenterminalen der menschlichen Retina zeigte, daß diese entsprechend der Zahl ihrer SK 1-3 Ribbonsynapsen aufweisen. Letztere bestehen aus einem an der Zellmembran senkrecht über eine ad verankerten SK und der aktiven Zone, die einem ca. 200 nm breiten Bereich der Zellmembran in Fortsetzung der ad nach seitlich oben entspricht. Die boomerang- bis hufeisenförmigen SK haben 2 parallele flache Hauptflächen. Postsynaptisch liegen zwei Horizontalzellfortsätze, welche mit variabeln Aufspaltungen von einem engen Hilus aus tief in Stäbchenendkolben invaginiert sind. Sie verbreitern sich termi-nal und zeigen große breite oft aufgefächerte bzw. verzweigte Auftreibungen. Die Ribbon-synapsen sind in die zwischen solchen Endauftreibungen entstehenden Rinnen eingesenkt. Unterhalb ihrer ad berühren sich die Horizontalzellterminale. Etwas darunter enden 1-2 ca. 100 nm breite Bipolarzelldendriten, die vom Zentrum der Invagination des Stäbchenterminals zum Hilus hin dünner werden, um zum Soma invaginierender ON-Bipolarzellen weiterzulau-fen. Da die Zahl der in den Stäbchenendkolben eintretenden Fortsätze variabel ist, fanden sich Konstellationen von 1-3 SK, 1-3 Horizontal- und 1-4 Bipolarzellterminalen, wie sie auch in der Literatur beschrieben sind. Drei zentrale Ausschnitte menschlicher Zapfenpedikel wurden aus lückenlosen Serienschnit-ten mit ihren Mitochondrien, SK und den in Form von Triaden hier invaginierenden postrib-bonsynaptischen Fortsätzen rekonstruiert. Der Grundbauplan der Ribbonsynapsen ist hier dem der Stäbchen ähnlich, jedoch sind die SK kürzer, die Invaginationen deutlich kleiner und nie verzweigt, die Bipolarzelldendriten breiter und die Horizontalzellfortsätze terminal weniger stark und nur rundlich aufgetrieben. Zapfen-SK sind nur in einer Ebene schwach gebogene Bänder. Die gefundene Zahl von Zapfen SK paßt zu Literaturdaten, deren Zusammenfas-sung für Primaten foveanah 10-20 und peripher 30-40 SK zeigt. In Bipolarzellaxonen des Menschen waren SK nicht immer über leistenartige Membranplaques am Plasmalemm ver-ankert. Die hier flachen Ribbonsynapsen zeigten kleinere bandförmige oder nur ca. 250 x 150 x 35 nm große plattenförmige SK mit etwas größerem Abstand zu den aktiven Zonen als in Photorezeptoren. Bei BALB/c Mäusen, deren SK besonders deutlich auf Veränderungen der Photoperiode oder experimentelle Bedingungen reagieren, zeigten Rekonstruktionen von Stäbchenribbon-synapsen am Ende der Dunkelphase band- bis boomerangförmige SK und weder Klumpen noch Kugeln. Im ersten Drittel und gegen Ende der Lichtphase fanden sich jedoch ca. 20 Prozent solch veränderter SK. Gleichzeitig waren die mittleren Abschnitte vieler SK unter beiden Lichtbedingungen dünner als am Ende der Dunkelphase. Die langen, oft mehrfach gebogenen und verdrehten Zapfen-SK dieser Mäuse waren unabhängig von den Lichtbedin-gungen oft deutlich größer als die der Stäbchen, wohingegen beim Menschen Zapfen-SK re-lativ gerade, bandförmige Zellorganellen geringerer Größe als in Stäbchen darstellten. Während in Stäbchenterminalen nur ausnahmsweise mehr als ein größeres bandförmiges SK (neben eventuellen kugelförmigen) vorlag, zeigten sich in den Zapfen orts- und spezies-abhängig 15 bis über 25 meist bandförmige Organellen, die in wenigen Fällen mit zwei ge-legentlich sogar 3 verschiedenen Triaden aus 2 Horizontal- und einem Bipolarzellfortsatz ver-bunden waren. Dies ist bei BALB/c Mäusen, die weniger, aber größere Zapfen-SK zeigten, häufiger als beim Menschen. Die SK der Bipolarzellen in der inneren plexiformen Schicht waren speziesübergreifend meist lange Bänder oder kleine Platten mit ca. 250 x 150 nm großen Hauptflächen und nur ge-ringen Verdrehungen. Verschiedene Bipolarzelltypen haben unterschiedlich viele SK. Im Rahmen der Arbeit erstmals erstellte 3D-Rekonstruktion ektopischer synaptischer Körper-chen (eSK) konnten belegen, daß diese in Bipolarzelldendriten lokalisiert sind. Die kleinen, leicht gebogenen, 35 nm dicken Platten, deren große Oberflächen Dimensionen von meist nur ca. 100 x 200 nm hatten, sind praktisch nie an der Zellmembran verankert, sondern ste-hen in einigen Fällen über zu langen Tubuli fusionierte Vesikel mit dem Interzellularspalt in Verbindung. Dies könnte ein Hinweis auf eine "compound" Endo- oder Exozytose sein. Sel-ten finden sich zwei, ausnahmsweise auch drei parallel zueinander angeordnete SK im Inne-ren der Bipolarzelldendriten, meistens nahe deren Eintritt in Stäbchenendkolben. Im Gegen-satz zur Ratte fanden sich eSK bei seit Geburt unter Dauerdunkelheit gehaltenen BALB/c Mäusen sogar im in Stäbchen- bzw. Zapfenterminal invaginierten Abschnitt von Bipolarzell-dendriten. Neben plattenförmigen SK lagen bei diesen Mäusen auch innen hohle klumpen-förmige Organellen in Stäbchenbipolarzelldendriten vor. Unter Organkultur und Ca++-Entzug fanden sich in Stäbchen die massivsten Veränderungen von SK, die entweder als Klumpen oder Kugeln vorlagen oder massive Protrusionen an ei-nem kleinen plattenförmigen Abschnitt zeigten, der noch an der ad befestigt blieb. Die Be-funde deuten darauf hin, daß Licht über Kalziumentzug zu Verklumpungen an SK und zur Abschnürung von klumpen- bis kugelförmigen SK Fragmenten führt. Bei der Rekonstruktion mit anti-β-Dystroglykan Immunogold-markierter Zapfenterminalen der Hühnchenretina konnte erstmals gezeigt werden, daß sich dieses zum Dystrophin-assozierten Glykoproteinkomplex gehörende Protein in perisynaptischen Fortsätzen der Pho-torezeptoren seitlich und an ihren Spitzen fand, während Horizontal- und Bipolarzellfortsätze nicht markiert waren. Dies deutet auf eine neue strukturelle oder funktionelle Domäne in Pho-torezeptorterminalen hin, die eine noch im Detail zu klärende Rolle bei der synaptischen Transmission spielt, da bei Mutationen im Dystrophin-assoziierten Proteinkomplex eine Ver-änderung der synaptischen Kommunikation in der äußeren plexiformen Schicht zu beobach-ten ist. In der Zirbeldrüse sind die meisten SK wenig gebogene, flache, plattenförmige Strukturen, die bei der Ratte meist ca. 300x150x35 nm groß sind. Daneben gibt es deutlich längere bandförmige Organellen und unter Normalbedingungen bei Ratte und Hühnchen praktisch keine, bei Meerschweinchen nur wenige klumpige oder kugelförmige SK. Pinealozyten der Meerschweinchenzirbeldrüse weisen üblicherweise Felder parallel gruppierter plattenförmi-ger synaptischer Körperchen auf. Unter Dauerlicht zeigten sich an der Membran benachbar-ter Zellen einander gegenüberliegende Felder stark verbogener, partiell verdickter SK, die vermutlich aus verschmolzenen Einzelplatten entstanden waren sowie deutlich mehr kugeli-ge bzw. klumpige SK. Die Organellen nehmen nachts an Größe zu, wodurch sich ihre Ober-fläche vergrößert, bei Ratten nimmt sie um 19,3 Prozent von 0,041 auf 0,0501 µm² zu. Da die plattenförmigen SK eine konstante Dicke von 35 nm hatten, läßt sich so ein durchschnitt-liches Volumen von 1,47x10-3 µm³ für 12.00 und von 1,75x10-3 µm³ für Mitternacht mit einer Zunahme von 0,28x10-3 µm³ (entspricht 19,3 %) errechnen. Der Vergleich von Pinealocyten-SK von unter LD 4:20 zu LD 20:4 gehaltenen Ratten zeigte unter LD 20:4 insignifikant mehr SK, die signifikant längere Profile hatten, was auf eine Größenzunahme der Organellen hin-deutet. Überlegungen und mathematische Berechnungen, was Profillängenmessungen bedeuten und wieviele Profile für sinnvolle Vergleiche ausgewertet werden müßten, werden kritisch diskutiert. Die selbst erhobenen Befunde werden im Kontext mit allen verfügbaren Literaturdaten de origine, dem Auftreten von SK in der Ontogenese sowie SK betreffenden pathologischen und Altersveränderungen betrachtet. Hierbei deutet die Analyse der Chronobiologie von SK in quantitativer und morphologischer Hinsicht auf eine Abhängigkeit von der Photoperiode bzw. Licht und Dunkelheit und nicht auf eine endogene zirkadiane Rhythmik hin. Die oberhalb funktionell wichtiger Ca++-Känale lokalisierten SK setzen in Photorezeptoren die Lichtinformation in exozytierte Glutamatquanten um, wobei das Glutamat an verschiedenen postsynaptischen Orten wirkt. Die zuvor nie so anschaulich durch 3D-Stereoanimationen visualisierten Befunde zeigen, daß die Morphologie von SK hier für eine maximal schnelle Freisetzung der gebundenen Transmittervesikel an in unmittelbarer Nähe gelegenen aktiven Zonen der Ribbonsynapsen optimiert ist. Der molekulare Aufbau von SK wird ultrastrukturell nachvollzogen und die Funktion der Organellen diskutiert. Diesbezüglich ist die Vesikelspei-cherung erwiesen, das "Priming" für die Exozytose beinahe bewiesen, eine Koordinations-funktion für multivesikuläre Transmitterfreisetzung ist denkbar, während eine Förderband-funktion eher unwahrscheinlich ist. In breve haben die im Rahmen dieser Habilitation ge-wonnenen Erkenntnisse und entwickelten Methoden einige Beiträge zur Klärung des mor-phologisch funktionellen Gesamtverständnisses der Ribbonsynapsen geleistet.
Resumo:
Ziel der vorliegenden Arbeit war es, mithilfe von Dressurexperimenten in Kombination mit dem Einsatz von Neuropharmaka die Bedeutung des retinalen ON-Kanals für zwei visuelle Leistungen des Goldfisches – das kontrastabhängige zeitliche Auflösungsvermögen sowie die Wellenlängenunterscheidungsfähigkeit - zu untersuchen. Da die Tiere nach der pharmakologischen Blockade keinerlei verändertes Verhalten zeigten, kann davon ausgegangen werden, dass der retinale ON-Kanal weder für die Prozessierung des kontrastabhängigen zeitlichen Auflösungsvermögens noch für die Wellenlängenunterscheidungsfähigkeit eine maßgebliche Rolle spielt. Aus den Versuchen zur Wellenlängenunterscheidungsfähigkeit kann des Weiteren abgeleitet werden, dass der ON-Kanal auch für die spektrale Empfindlichkeit der Tiere bei der gegebenen Beleuchtungs- und Dressurbedingungen (L+-Dressur) keine Bedeutung zu haben scheint. Nach den Versuchen zum kontrastabhängigen zeitlichen Auflösungsvermögen kann festgehalten werden, dass das zeitliche Auflösungsvermögen des Goldfisches sich mit abnehmendem Stimuluskontrast verändert: Der für die Tiere wahrnehmbare Flickerfrequenzbereich wird mit abnehmendem Kontrast geringer. Die Flimmerfusionsfrequenz wird im oberen Frequenzbereich früher erreicht; im unteren Flickerfrequenzbereich tritt mit abnehmendem Kontrast auch eine untere Grenze des zeitlichen Auflösungsvermögens auf. Des Weiteren zeigen die Ergebnisse aus den Verhaltensversuchen zu den kontrastabhängigen zeitlichen Übertragungseigenschaften eine gute Vergleichbarkeit zu elektrophysiologisch gewonnenen Antworten von ON bzw. OFF-Bipolarzellen. Ebenso ähneln sich die Kurvenverläufe zum kontrastabhängigen zeitlichen Auflösungsvermögen und die aus den Versuchen zur kontrastabhängigen Ganzfeldbewegungswahrnehmung – einer visuellen Leistung, deren Prozessierung eines ON-Kanal-Beitrages bedarf. Diese Ergebnisse deuten darauf hin, dass das zeitliche Auflösungsvermögen wie auch die Ganzfeldbewegungswahrnehmung hauptsächlich von retinalen Verarbeitungsprozessen abhängen.
Resumo:
Intraflagellar transport (IFT) is required for the assembly and maintenance of cilia. In this study we analyzed the subcellular localization of IFT proteins in retinal cells by correlative high-resolution immunofluorescence and immunoelectron microscopy. The rod photoreceptor cell was used as a model system to analyze protein distribution in cilia. To date the expression of IFT proteins has been described in the ciliary region without deciphering the precise spatial and temporal subcellular localization of IFT proteins, which was the focus of my work. rnThe establishment of the pre-embedding immunoelectron method was an important first step for the present doctoral thesis. Results of this work reveal the differential localization of IFT20, IFT52, IFT57, IFT88, IFT140 in sub-ciliary compartments and also their presence in non-ciliary compartments of retinal photoreceptor cells. Furthermore, the localization of IFT20, IFT52 and IFT57 in dendritic processes of non-ciliated neurons indicates that IFT protein complexes also operate in non-ciliated cells and may participate in intracellular vesicle trafficking in eukaryotic cells in general.rnIn addition, we have investigated the involvement of IFT proteins in the ciliogenesis of vertebrate photoreceptor cilia. Electron microscopy analyses revealed six morphologically distinct stages. The first stages are characterized by electron dense centriolar satellites and a ciliary vesicle, while the formation of a ciliary shaft and of the light sensitive outer segment disks are features of the later stages. IFT proteins were expressed during all stages of photoreceptor cell development and found to be associated with the ciliary apparatus. In addition to the centriole and basal body IFT proteins are present in the photoreceptor cytoplasm, associated with centriolar satellites, post-Golgi vesicles and with the ciliary vesicle. Therewith the data provide an evidence for the involvement of IFT proteins during ciliogenesis, including the formation of the ciliary vesicle and the elongation of the primary cilium of photoreceptor cells. Moreover, the cytoplasmic localization of IFT proteins in the absence of a ciliary shaft in early stages of ciliogenesis indicates roles of IFT proteins beyond their well-established function for IFT in mature cilia and flagella. rn
Resumo:
Before signals of the visual environment are transferred to higher brain areas via the optic nerve, they are processed and filtered in parallel pathways within the retina. In the past a plethora of functionally distinct ganglion cell types responding to certain aspects of the environment, such as direction of movement, contrast and colour have been described. Aim of this thesis was the anatomical investigation of the selectivity in retinal circuits underlying this diversity. For this purpose, mouse and macaque retinae were analysed. OFF-ganglion cells in the mouse retina received their excitatory drive unselectively from all bipolar cell types stratifying within the area of their dendritic trees. Only the input to direction-selective C6 ganglion cells and bistratified D2 ganglion cells appeared to be weighted. In primates the highly specialised midget-system forms a 1:1 connection from red- and green-sensitive cones onto midget bipolar- and ganglion cells, building the substrate for red/green colour vision. Here it was demonstrated that blue-sensitive (S-) cones also contact OFF-midget bipolars and are, thus, potential candidates to transfer blue-OFF signals to M1 intrinsically photosensitive ganglion cells (ipRGCs). M1 cells received glycinergic input from A8 amacrine cells and express GABAA receptors containing subunit alpha 3. M2 cells, in contrast, received less inhibitory input.