12 resultados para POLARIZATION PHENOMENA
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In this thesis I concentrate on the angular correlations in top quark decays and their next--to--leading order (NLO) QCD corrections. I also discuss the leading--order (LO) angular correlations in unpolarized and polarized hyperon decays. In the first part of the thesis I calculate the angular correlation between the top quark spin and the momentum of decay products in the rest frame decay of a polarized top quark into a charged Higgs boson and a bottom quark in Two-Higgs-Doublet-Models: $t(uparrow)rightarrow b+H^{+}$. The decay rate in this process is split into an angular independent part (unpolarized) and an angular dependent part (polar correlation). I provide closed form formulae for the ${mathcal O}(alpha_{s})$ radiative corrections to the unpolarized and the polar correlation functions for $m_{b}neq 0$ and $m_{b}=0$. The results for the unpolarized rate agree with the existing results in the literature. The results for the polarized correlations are new. I found that, for certain values of $tanbeta$, the ${mathcal O}(alpha_s)$ radiative corrections to the unpolarized, polarized rates, and the asymmetry parameter can become quite large. In the second part I concentrate on the semileptonic rest frame decay of a polarized top quark into a bottom quark and a lepton pair: $t(uparrow) to X_b + ell^+ + nu_ell$. I analyze the angular correlations between the top quark spin and the momenta of the decay products in two different helicity coordinate systems: system 1a with the $z$--axis along the charged lepton momentum, and system 3a with the $z$--axis along the neutrino momentum. The decay rate then splits into an angular independent part (unpolarized), a polar angle dependent part (polar correlation) and an azimuthal angle dependent part (azimuthal correlation). I present closed form expressions for the ${mathcal O}(alpha_{s})$ radiative corrections to the unpolarized part and the polar and azimuthal correlations in system 1a and 3a for $m_{b}neq 0$ and $m_{b}=0$. For the unpolarized part and the polar correlation I agree with existing results. My results for the azimuthal correlations are new. In system 1a I found that the azimuthal correlation vanishes in the leading order as a consequence of the $(V-A)$ nature of the Standard Model current. The ${mathcal O}(alpha_{s})$ radiative corrections to the azimuthal correlation in system 1a are very small (around 0.24% relative to the unpolarized LO rate). In system 3a the azimuthal correlation does not vanish at LO. The ${mathcal O}(alpha_{s})$ radiative corrections decreases the LO azimuthal asymmetry by around 1%. In the last part I turn to the angular distribution in semileptonic hyperon decays. Using the helicity method I derive complete formulas for the leading order joint angular decay distributions occurring in semileptonic hyperon decays including lepton mass and polarization effects. Compared to the traditional covariant calculation the helicity method allows one to organize the calculation of the angular decay distributions in a very compact and efficient way. This is demonstrated by the specific example of the polarized hyperon decay $Xi^0(uparrow) to Sigma^+ + l^- + bar{nu}_l$ ,($l^-=e^-, mu^-$) followed by the nonleptonic decay $Sigma^+ to p + pi^0$, which is described by a five--fold angular decay distribution.
Resumo:
The cooperative motion algorithm was applied on the molecular simulation of complex chemical reactions and macromolecular orientation phenomena in confined geometries. First, we investigated the case of equilibrium step-growth polymerization in lamellae, pores and droplets. In such systems, confinement was quantified as the area/volume ratio. Results showed that, as confinement increases, polymerization becomes slower and the average molecular weight (MW) at equilibrium decreases. This is caused by the sterical hindrance imposed by the walls since chain growth reactions in their close vicinity have less realization possibilities. For reactions inside droplets at surfaces, contact angles usually increased after polymerization to compensate conformation restrictions imposed by confinement upon growing chains. In a second investigation, we considered monodisperse and chemically inert chains and focused on the effect of confinement on chain orientation. Simulations of thin polymer films showed that chains are preferably oriented parallel to the surface. Orientation increases as MW increases or as film thickness d decreases, in qualitative agreement with experiments with low MW polystyrene. It is demonstrated that the orientation of simulated chains results from a size effect, being a function of the ratio between chain end-to-end distance and d. This study was complemented by experiments with thin films of pi-conjugated polymers like MEH-PPV. Anisotropic refractive index measurements were used to analyze chain orientation. With increasing MW, orientation is enhanced. However, for MEH-PPV, orientation does not depend on d even at thicknesses much larger than the chain contour length. This contradiction with simulations was discussed by considering additional causes for orientation, for instance the appearance of nematic-like ordering in polymer films. In another investigation, we simulated droplet evaporation at soluble surfaces and reproduced the formation of wells surrounded by ringlike deposits at the surface, as observed experimentally. In our simulations, swollen substrate particles migrate to the border of the droplet to minimize the contact between solvent and vacuum, which costs the most energy. Deposit formation in the beginning of evaporation results in pinning of the droplet. When polymer chains at the substrate surface have strong uniaxial orientation, the resulting pattern is no longer similar to a ring but to a pair of half-moons. In a final stage, as an extension for the model developed for polymerization in nanoreactors, we studied the effect of geometrical confinement on a hypothetical oscillating reaction following the mechanism of the so called periodically forced Brusselator. It was shown that a reaction which is chaotic in the bulk may be driven to periodicity by confinement and vice-versa, opening new perspectives for chaos control.
Resumo:
Virtual Compton Scattering (VCS) is an important reaction for understanding nucleon structure at low energies. By studying this process, the generalized polarizabilities of the nucleon can be measured. These observables are a generalization of the already known polarizabilities and will permit theoretical models to be challenged on a new level. More specifically, there exist six generalized polarizabilities and in order to disentangle them all, a double polarization experiment must be performed. Within this work, the VCS reaction p(e,e p)gamma was measured at MAMI using the A1 Collaboration three spectrometer setup with Q2=0.33 (GeV/c)2. Using the highly polarized MAMI beam and a recoil proton polarimeter, it was possible to measure both the VCS cross section and the double polarization observables. Already in 2000, the unpolarized VCS cross section was measured at MAMI. In this new experiment, we could confirm the old data and furthermore the double polarization observables were measured for the first time. The data were taken in five periods between 2005 and 2006. In this work, the data were analyzed to extract the cross section and the proton polarization. For the analysis, a maximum likelihood algorithm was developed together with the full simulation of all the analysis steps. The experiment is limited by the low statistics due mainly to the focal plane proton polarimeter efficiency. To overcome this problem, a new determination and parameterization of the carbon analyzing power was performed. The main result of the experiment is the extraction of a new combination of the generalized polarizabilities using the double polarization observables.
Resumo:
In this work, metal nanoparticles produced by nanosphere lithography were studied in terms of their optical properties (in connection to their plasmon resonances), their potential application in sensing platforms - for thin layer sensing and bio-recognition events -, and for a particular case (the nanocrescents), for enhanced spectroscopy studies. The general preparation procedures introduced early in 2005 by Shumaker-Parry et al. to produce metallic nanocrescents were extended to give rise to more complex (isolated) structures, and also, by combining colloidal monolayer fabrication and plasma etching techniques, to arrays of them. The fabrication methods presented in this work were extended not only to new shapes or arrangements of particles, but included also a targeted surface tailoring of the substrates and the structures, using different thiol and silane compounds as linkers for further attachment of, i.e. polyelectrolyte layers, which allow for a controlled tailoring of their nanoenvironment. The optical properties of the nanocrescents were studied with conventional transmission spectroscopy; a simple multipole model was adapted to explain their behaviour qualitatively. In terms of applications, the results on thin film sensing using these particles show that the crescents present an interesting mode-dependent sensitivity and spatial extension. Parallel to this, the penetrations depths were modeled with two simplified schemes, obtaining good agreement with theory. The multiple modes of the particles with their characteristic decay lengths and sensitivities represent a major improvement for particle-sensing platforms compared to previous single resonance systems. The nanocrescents were also used to alter the emission properties of fluorophores placed close to them. In this work, green emitting dyes were placed at controlled distances from the structures and excited using a pulsed laser emitting in the near infrared. The fluorescence signal obtained in this manner should be connected to a two-photon processes triggered by these structures; obtaining first insight into plasmon-mediated enhancement phenomena. An even simpler and faster approach to produce plasmonic structures than that for the crescents was tested. Metallic nanodiscs and nanoellipses were produced by means of nanosphere lithography, extending a procedure reported in the literature to new shapes and optical properties. The optical properties of these particles were characterized by extinction spectroscopy and compared to results from the literature. Their major advantage is that they present a polarization-dependent response, like the nanocrescents, but are much simpler to fabricate, and the resonances can be tailored in the visible with relative ease. The sensing capabilities of the metallic nanodiscs were explored in the same manner as for the nanocrescents, meaning their response to thin layers and to bio-recognition events on their surface. The sensitivity of these nanostructures to thin films proved to be lower than that of the crescents, though in the same order of magnitude. Experimental information about the near field extension for the Au nanodiscs of different sizes was also extracted from these measurements. Further resonance-tailoring approaches based on electrochemical deposition of metals on the nanodiscs were explored, as a means of modifying plasmon resonances by changing surface properties of the nanoparticles. First results on these experiments would indicate that the deposition of Ag on Au on a submonolayer coverage level can lead to important blue-shifts in the resonances, which would open a simple way to tailor resonances by changing material properties in a local manner.
Resumo:
Enhancing the sensitivity of nuclear magnetic resonance measurements via hyperpolarization techniques like parahydrogen induced polarization (PHIP) is of high interest for spectroscopic investigations. Parahydrogen induced polarization is a chemical method, which makes use of the correlation between nuclear spins in parahydrogen to create hyperpolarized molecules. The key feature of this technique is the pairwise and simultaneous transfer of the two hydrogen atoms of parahydrogen to a double or triple bond resulting in a population of the Zeeman energy levels different from the Boltzmann equation. The obtained hyperpolarization results in antiphase peaks in the NMR spectrum with high intensities. Due to these strong NMR signals, this method finds arnlot of applications in chemistry e.g. the characterization of short-lived reaction intermediates. Also in medicine it opens up the possibility to boost the sensitivity of medical diagnostics via magnetic labeling of active contrast agents. Thus, further examination and optimization of the PHIP technique is of significant importance in order to achieve the highest possible sensitivity gain.rnrnIn this work, different aspects concerning PHIP were studied with respect to its chemical and spectroscopic background. The first part of this work mainly focused on optimizing the PHIP technique by investigating different catalyst systems and developing new setups for the parahydrogenation. Further examinations facilitated the transfer of the generated polarization from the protons to heteronuclei like 13C. The second part of this thesis examined the possibility to transfer these results to different biologically active compounds to enable their later application in medical diagnostics. Onerngroup of interesting substances is represented by metabolites or neurotransmitters in mammalian cells. Other interesting substances are clinically relevant drugs like a barbituric acid derivative or antidepressant drugs like citalopram which were investigated with regard to their applicability for the PHIP technique and the possibility to achievernpolarization transfer to 13C nuclei. The last investigated substrate is a polymerizable monomer whose polymer was used as a blood plasma expander for trauma victims after the first half of the 20th century. In this case, the utility of the monomer for the PHIP technique as a basis for later investigations of a polymerization reaction using hyperpolarized monomers was examined.rnrnHence, this thesis covers the optimization of the PHIP technology, hereby combining different fields of research like chemical and spectroscopical aspects, and transfers the results to applications of real biologally acitve compounds.
Resumo:
Die Kernmagnetresonanz (NMR) ist eine vielseitige Technik, die auf spin-tragende Kerne angewiesen ist. Seit ihrer Entdeckung ist die Kernmagnetresonanz zu einem unverzichtbaren Werkzeug in unzähligen Anwendungen der Physik, Chemie, Biologie und Medizin geworden. Das größte Problem der NMR ist ihre geringe Sensitivtät auf Grund der sehr kleinen Energieaufspaltung bei Raumtemperatur. Für Protonenspins, die das größte magnetogyrische Verhältnis besitzen, ist der Polarisationsgrad selbst in den größten verfügbaren Magnetfeldern (24 T) nur ~7*10^(-5).rnDurch die geringe inhärente Polarisation ist folglich eine theoretische Sensitivitätssteigerung von mehr als 10^4 möglich. rnIn dieser Arbeit wurden verschiedene technische Aspekte und unterschiedliche Polarisationsagenzien für Dynamic Nuclear Polarization (DNP) untersucht.rnDie technische Entwicklung des mobilen Aufbaus umfasst die Verwendung eines neuen Halbach Magneten, die Konstruktion neuer Probenköpfe und den automatisierten Ablauf der Experimente mittels eines LabVIEW basierten Programms. Desweiteren wurden zwei neue Polarisationsagenzien mit besonderen Merkmalen für den Overhauser und den Tieftemperatur DNP getestet. Zusätzlich konnte die Durchführbarkeit von NMR Experimenten an Heterokernen (19F und 13C) im mobilen Aufbau bei 0,35 T gezeigt werden. Diese Ergebnisse zeigen die Möglichkeiten der Polarisationstechnik DNP auf, wenn Heterokerne mit einem kleinen magnetogyrischen Verhältnis polarisiert werden müssen.rnDie Sensitivitätssteigerung sollte viele neue Anwendungen, speziell in der Medizin, ermöglichen.
Resumo:
Polymer-nanoparticle hybrids show synergistic effects, demonstrating both, the unique properties of nanosized structures and the good processability and functionalities of polymeric materials. This work shows the synthesis and application of block copolymers containing a soluble, functional block and a short anchor block, which efficiently binds to the surface of nanocrystals. We functionalized anisotropic, semiconducting nanoparticles, which can be dissolved in organic and polymeric matrices upon modification. The modified nanorods have the ability to form liquid crystalline phases, which behave similar to low molecular liquid crystals with a reversible clearing behaviour. These liquid crystalline phases could also be obtained in hole conducting matrices. For a macroscopic orientation of the nanorods, electric fields were applied and a switching (in analogy to known liquid crystals) to a homeotropic orientation was observed.rnBy introduction of dye molecules in the anchor block of a hole conducting block copolymer, all essential components of a solar cell can be combined in a single particle. Light absorption of the dye induces the injection of electrons into the particles, followed by a charging, that was monitored by a special AFM technique.rnLight emitting nanocrystals were functionalized analogously with a hole transporting polymer. The stability of the particles could be enhanced by the sterically stabilizing polymer corona and the particles showed improved properties in terms of processing. We applied these hybrid materials in light emitting devices, which showed better characteristics due to an improved hole injection and well dispersed emitting particles in the active device layer.rnThe work shows the broad spectrum of properties and applications based on the synergistic effects in hybrid and composite materials.
Resumo:
X-ray photoemission spectroscopy (XPS) is one of the most universal and powerful tools for investigation of chemical states and electronic structures of materials. The application of hard x-rays increases the inelastic mean free path of the emitted electrons within the solid and thus makes hard x-ray photoelectron spectroscopy (HAXPES) a bulk sensitive probe for solid state research and especially a very effective nondestructive technique to study buried layers.rnThis thesis focuses on the investigation of multilayer structures, used in magnetic tunnel junctions (MTJs), by a number of techniques applying HAXPES. MTJs are the most important components of novel nanoscale devices employed in spintronics. rnThe investigation and deep understanding of the mechanisms responsible for the high performance of such devices and properties of employed magnetic materials that are, in turn, defined by their electronic structure becomes feasible applying HAXPES. Thus the process of B diffusion in CoFeB-based MTJs was investigated with respect to the annealing temperature and its influence on the changes in the electronic structure of CoFeB electrodes that clarify the behaviour and huge TMR ratio values obtained in such devices. These results are presented in chapter 6. The results of investigation of the changes in the valence states of buried off-stoichiometric Co2MnSi electrodes were investigated with respect to the Mn content α and its influence on the observed TMR ratio are described in chapter 7.rnrnMagnetoelectronic properties such as exchange splitting in ferromagnetic materials as well as the macroscopic magnetic ordering can be studied by magnetic circular dichroism in photoemission (MCDAD). It is characterized by the appearance of an asymmetry in the photoemission spectra taken either from the magnetized sample with the reversal of the photon helicity or by reversal of magnetization direction of the sample when the photon helicity direction is fixed. Though recently it has been widely applied for the characterization of surfaces using low energy photons, the bulk properties have stayed inaccessible. Therefore in this work this method was integrated to HAXPES to provide an access to exploration of magnetic phenomena in the buried layers of the complex multilayer structures. Chapter 8 contains the results of the MCDAD measurements employing hard x-rays for exploration of magnetic properties of the common CoFe-based band-ferromagnets as well as half-metallic ferromagnet Co2FeAl-based MTJs.rnrnInasmuch as the magnetoresistive characteristics in spintronic devices are fully defined by the electron spins of ferromagnetic materials their direct measurements always attracted much attention but up to date have been limited by the surface sensitivity of the developed techniques. Chapter 9 presents the results on the successfully performed spin-resolved HAXPES experiment using a spin polarimeter of the SPLEED-type on a buried Co2FeAl0.5Si0.5 magnetic layer. The measurements prove that a spin polarization of about 50 % is retained during the transmission of the photoelectrons emitted from the Fe 2p3/2 state through a 3-nm-thick oxide capping layer.rn
Resumo:
A major challenge in imaging is the detection of small amounts of molecules of interest. In the case of magnetic resonance imaging (MRI) their signals are typically concealed by the large background signal of e.g. the tissue of the body. This problem can be tackled by hyperpolarization which increases the NMR signals up to several orders of magnitude. However, this strategy is limited for 1H, the most widely used nucleus in NMR andrnMRI, because the enormous number of protons in the body screen the small amount of hyperpolarized ones.Here, I describe a method giving rise to high 1H MRI contrast for hyperpolarized molecules against a large background signal. The contrast is based on the J-coupling induced rephasing of the NMR signal of molecules hyperpolarized via parahydrogen induce polarization (PHIP) and it can easily be implemented in common pulse sequences.rnrnHyperpolarization methods typically require expensive technical equipment (e.g. lasers or microwaves) and most techniques work only in batch mode, thus the limited lifetime of the hyperpolarization is limiting its applications. Therefore, the second part of my thesis deals with the simple and efficient generation of an hyperpolarization.These two achievements open up alternative opportunities to use the standard MRI nucleus 1H for e.g. metabolic imaging in the future.
Parahydrogen induced polarization on a clinical MRI system : polarization transfer of two spin order
Resumo:
Hyperpolarization techniques enhance the nuclear spin polarization and thus allow for new nuclear magnetic resonance applications like in vivo metabolic imaging. One of these techniques is Parahydrogen Induced Polarization (PHIP). It leads to a hyperpolarized 1H spin state which can be transferred to a heteronucleus like 13C by a radiofrequency (RF) pulse sequence. In this work, timing of such a sequence was analyzed and optimized for the molecule hydroxyethyl propionate. The pulse sequence was adapted for the work on a clinical magnetic resonance imaging (MRI) system which is usually equipped only with a single RF transmit channel. Optimal control theory optimizations were performed to achieve an optimized polarization transfer. A drawback of hyperpolarization is its limited lifetime due to relaxation processes. The lifetime can be increased by storing the hyperpolarization in a spin singlet state. The second part of this work therefore addresses the spin singlet state of the Cs-symmetric molecule dimethyl maleate which needs to be converted to the spin triplet state to be detectable. This conversion was realized on a clinical MRI system, both by field cycling and by two RF pulse sequences which were adapted and optimized for this purpose. Using multiple conversions enables the determination of the lifetime of the singlet state as well as the conversion efficiency of the RF pulse sequence. Both, the hyperpolarized 13C spin state and the converted singlet state were utilized for MR imaging. Careful choice of the echo time was shown to be crucial for both molecules.
Resumo:
Die Deposition von dünnen, metallischen Schichten auf Silizium-Substraten stellt bereits seit Jahrzehnten die wichtigste Möglichkeit dar, um die wachsenden Anforderungen der Speichertechnologien zu erfüllen. Obwohl Multilagenstrukturen aus oxidischen Schichten eine nahezu unerschöpfliche Vielfalt an neuen Effekten bieten, kommen diese aktuell nur in Nischenanwendungen zum Einsatz. Der Fokus dieser Arbeit liegt auf dem Verständnis von Phänomenen, die nur an Grenzflächensystemen zu beobachten sind. Die Basis der Untersuchungen stellten die Präparation der Multilagenstrukturen durch Laserablation dar. Eine Untersuchung der strukturellen Eigenschaften von multiferroischen BiFeO3 (BFO)-Schichten erlaubte eine Analyse der Wachstumsmodi und der Symmetrie der Einheitszelle von BFO unter heteroepitaktischer Verspannung. Durch Piezokraftmikroskopie konnte die ferroelektrische Domänenstruktur dünner BFO-Schichten analysiert werden. Die Abbildung der magnetischen Domänenstruktur der ferromagnetischen La0,67Sr0,33MnO3 (LSMO)-Schicht und der antiferromagnetischen BFO-Schicht einer Bilagenstruktur durch Photoemissionselektronenmikroskopie erlaubte eine Analyse der Austauschkopplung an der Grenzfläche. Durch elektronische Rekonstruktion entsteht an der LaAlO3 (LAO) /SrTiO3 (STO)-Grenzfläche ein leitfähiger, quasi-zweidimensionaler Zustand. Dessen Transporteigenschaften wurden mit einem Schwerpunkt auf deren Beeinflussung durch ein elektrisches Feld charakterisiert. Diese Ergebnisse führten zur Implementierung einer ferroelektrischen BFO-Schicht zur Manipulation der Leitfähigkeit an der LAO/STO-Grenzfläche. Die Kontrolle des Widerstandes eines mikrostrukturierten Bereichs durch die Polarisation der BFO-Schicht erlaubt die Nutzung der Struktur als Speichertechnologie.
Resumo:
The Standard Model of particle physics is a very successful theory which describes nearly all known processes of particle physics very precisely. Nevertheless, there are several observations which cannot be explained within the existing theory. In this thesis, two analyses with high energy electrons and positrons using data of the ATLAS detector are presented. One, probing the Standard Model of particle physics and another searching for phenomena beyond the Standard Model.rnThe production of an electron-positron pair via the Drell-Yan process leads to a very clean signature in the detector with low background contributions. This allows for a very precise measurement of the cross-section and can be used as a precision test of perturbative quantum chromodynamics (pQCD) where this process has been calculated at next-to-next-to-leading order (NNLO). The invariant mass spectrum mee is sensitive to parton distribution functions (PFDs), in particular to the poorly known distribution of antiquarks at large momentum fraction (Bjoerken x). The measurementrnof the high-mass Drell-Yan cross-section in proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV is performed on a dataset collected with the ATLAS detector, corresponding to an integrated luminosity of 4.7 fb-1. The differential cross-section of pp -> Z/gamma + X -> e+e- + X is measured as a function of the invariant mass in the range 116 GeV < mee < 1500 GeV. The background is estimated using a data driven method and Monte Carlo simulations. The final cross-section is corrected for detector effects and different levels of final state radiation corrections. A comparison isrnmade to various event generators and to predictions of pQCD calculations at NNLO. A good agreement within the uncertainties between measured cross-sections and Standard Model predictions is observed.rnExamples of observed phenomena which can not be explained by the Standard Model are the amount of dark matter in the universe and neutrino oscillations. To explain these phenomena several extensions of the Standard Model are proposed, some of them leading to new processes with a high multiplicity of electrons and/or positrons in the final state. A model independent search in multi-object final states, with objects defined as electrons and positrons, is performed to search for these phenomenas. Therndataset collected at a center-of-mass energy of sqrt(s) = 8 TeV, corresponding to an integrated luminosity of 20.3 fb-1 is used. The events are separated in different categories using the object multiplicity. The data-driven background method, already used for the cross-section measurement was developed further for up to five objects to get an estimation of the number of events including fake contributions. Within the uncertainties the comparison between data and Standard Model predictions shows no significant deviations.