2 resultados para PHOTON IMAGING CAMERA

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal circuits in the retina analyze images according to qualitative aspects such as color or motion, before the information is transmitted to higher visual areas of the brain. One example, studied for over the last four decades, is the detection of motion direction in ‘direction selective’ neurons. Recently, the starburst amacrine cell, one type of retinal interneuron, has emerged as an essential player in the computation of direction selectivity. In this study the mechanisms underlying the computation of direction selective calcium signals in starburst cell dendrites were investigated using whole-cell electrical recordings and two-photon calcium imaging. Analysis of the somatic electrical responses to visual stimulation and pharmacological agents indicated that the directional signal (i) is not computed presynaptically to starburst cells or by inhibitory network interactions. It is thus computed via a cell-intrinsic mechanism, which (ii) depends upon the differential, i.e. direction selective, activation of voltage-gated channels. Optically measuring dendritic calcium signals as a function of somatic voltage suggests (iii) a difference in resting membrane potential between the starburst cell’s soma and its distal dendrites. In conclusion, it is proposed that the mechanism underlying direction selectivity in starburst cell dendrites relies on intrinsic properties of the cell, particularly on the interaction of spatio-temporally structured synaptic inputs with voltage-gated channels, and their differential activation due to a somato-dendritic difference in membrane potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-of-flight photoemission spectromicroscopy was used to measure and compare the two-photon photoemission (2PPE) spectra of Cu and Ag nanoparticles with linear dimensions ranging between 40 nm and several 100 nm, with those of the corresponding homogeneous surfaces. 2PPE was induced employing femtosecond laser radiation from a frequency-doubled Ti:sapphire laser in the spectral range between 375 nm and 425 nm with a pulse width of 200 fs and a repetition rate of 80 MHz. The use of a pulsed radiation source allowed us to use a high-resolution photoemission electron microscope as imaging time-of-flight spectrometer, and thus to obtain spectroscopic information about the laterally resolved electron signal. Ag nanoparticle films have been deposited on Si(111) by electron-beam evaporation, a technique leading to hemispherically-shaped Ag clusters. Isolated Cu nanoparticles have been generated by prolonged heating of a polycrystalline Cu sample. If compared to the spectra of the corresponding homogeneous surfaces, the Cu and Ag nanoparticle spectra are characterized by a strongly enhanced total 2PPE yield (enhancement factor up to 70), by a shift (about 0.1 eV) of the Fermi level onset towards lower final state energies, by a reduction of the work function (typically by 0.2 eV) and by a much steeper increase of the 2PPE yield towards lower final state energies. The shift of the Fermi level onset in the nanoparticle spectra has been explained by a positive unit charge (localized photohole) residing on the particle during the time-scale relevant for the 2PPE process (few femtoseconds). The total 2PPE yield enhancement and the different overall shape of the spectra have been explained by considering that the laser frequency was close to the localized surface plasmon resonance of the Cu and Ag nanoparticles. The synchronous oscillations induced by the laser in the metal electrons enhance the near-zone (NZ) field, defined as the linear superposition of the laser field and the field produced in the vicinity of the particles by the forced charge oscillations. From the present measurements it is clear that the NZ field behavior is responsible for the 2PPE enhancement and affects the 2PPE spatial and energy distribution and its dynamics. In particular, its strong spatial dependence allows indirect transitions through real intermediate states to take place in the metal clusters. Such transitions are forbidden by momentum conservation arguments and are thus experimentally much less probable on homogeneous surfaces. Further, we investigated specially tailored moon-shaped small metal nanostructures, whose NZ field was theoretically predicted, and compared the calculation with the laterally resolved 2PPE signal. We could show that the 2PPE signal gives a clear fingerprint of the theoretically predicted spatial dependence of the NZ field. This potential of our method is highly attractive in the novel field of plasmonics.