5 resultados para Ordinary Least Squares Method

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of maar-diatreme volcanoes has been perfomed by inversion of gravity and magnetic data. The geophysical inverse problem has been solved by means of the damped nonlinear least-squares method. To ensure stability and convergence of the solution of the inverse problem, a mathematical tool, consisting in data weighting and model scaling, has been worked out. Theoretical gravity and magnetic modeling of maar-diatreme volcanoes has been conducted in order to get information, which is used for a simple rough qualitative and/or quantitative interpretation. The information also serves as a priori information to design models for the inversion and/or to assist the interpretation of inversion results. The results of theoretical modeling have been used to roughly estimate the heights and the dip angles of the walls of eight Eifel maar-diatremes — each taken as a whole. Inversemodeling has been conducted for the Schönfeld Maar (magnetics) and the Hausten-Morswiesen Maar (gravity and magnetics). The geometrical parameters of these maars, as well as the density and magnetic properties of the rocks filling them, have been estimated. For a reliable interpretation of the inversion results, beside the knowledge from theoretical modeling, it was resorted to other tools such like field transformations and spectral analysis for complementary information. Geologic models, based on thesynthesis of the respective interpretation results, are presented for the two maars mentioned above. The results gave more insight into the genesis, physics and posteruptive development of the maar-diatreme volcanoes. A classification of the maar-diatreme volcanoes into three main types has been elaborated. Relatively high magnetic anomalies are indicative of scoria cones embeded within maar-diatremes if they are not caused by a strong remanent component of the magnetization. Smaller (weaker) secondary gravity and magnetic anomalies on the background of the main anomaly of a maar-diatreme — especially in the boundary areas — are indicative for subsidence processes, which probably occurred in the late sedimentation phase of the posteruptive development. Contrary to postulates referring to kimberlite pipes, there exists no generalized systematics between diameter and height nor between geophysical anomaly and the dimensions of the maar-diatreme volcanoes. Although both maar-diatreme volcanoes and kimberlite pipes are products of phreatomagmatism, they probably formed in different thermodynamic and hydrogeological environments. In the case of kimberlite pipes, large amounts of magma and groundwater, certainly supplied by deep and large reservoirs, interacted under high pressure and temperature conditions. This led to a long period phreatomagmatic process and hence to the formation of large structures. Concerning the maar-diatreme and tuff-ring-diatreme volcanoes, the phreatomagmatic process takes place due to an interaction between magma from small and shallow magma chambers (probably segregated magmas) and small amounts of near-surface groundwater under low pressure and temperature conditions. This leads to shorter time eruptions and consequently to structures of smaller size in comparison with kimberlite pipes. Nevertheless, the results show that the diameter to height ratio for 50% of the studied maar-diatremes is around 1, whereby the dip angle of the diatreme walls is similar to that of the kimberlite pipes and lies between 70 and 85°. Note that these numerical characteristics, especially the dip angle, hold for the maars the diatremes of which — estimated by modeling — have the shape of a truncated cone. This indicates that the diatreme can not be completely resolved by inversion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Röntgenabsorptionsspektroskopie (Extended X-ray absorption fine structure (EXAFS) spectroscopy) ist eine wichtige Methode zur Speziation von Schwermetallen in einem weiten Bereich von umweltrelevanten Systemen. Um Strukturparameter wie Koordinationszahl, Atomabstand und Debye-Waller Faktoren für die nächsten Nachbarn eines absorbierenden Atoms zu bestimmen, ist es für experimentelle EXAFS-Spektren üblich, unter Verwendung von Modellstrukturen einen „Least-Squares-Fit“ durchzuführen. Oft können verschiedene Modellstrukturen mit völlig unterschiedlicher chemischer Bedeutung die experimentellen EXAFS-Daten gleich gut beschreiben. Als gute Alternative zum konventionellen Kurven-Fit bietet sich das modifizierte Tikhonov-Regularisationsverfahren an. Ergänzend zur Tikhonov-Standardvariationsmethode enthält der in dieser Arbeit vorgestellte Algorithmus zwei weitere Schritte, nämlich die Anwendung des „Method of Separating Functionals“ und ein Iterationsverfahren mit Filtration im realen Raum. Um das modifizierte Tikhonov-Regularisationsverfahren zu testen und zu bestätigen wurden sowohl simulierte als auch experimentell gemessene EXAFS-Spektren einer kristallinen U(VI)-Verbindung mit bekannter Struktur, nämlich Soddyit (UO2)2SiO4 x 2H2O, untersucht. Die Leistungsfähigkeit dieser neuen Methode zur Auswertung von EXAFS-Spektren wird durch ihre Anwendung auf die Analyse von Proben mit unbekannter Struktur gezeigt, wie sie bei der Sorption von U(VI) bzw. von Pu(III)/Pu(IV) an Kaolinit auftreten. Ziel der Dissertation war es, die immer noch nicht voll ausgeschöpften Möglichkeiten des modifizierten Tikhonov-Regularisationsverfahrens für die Auswertung von EXAFS-Spektren aufzuzeigen. Die Ergebnisse lassen sich in zwei Kategorien einteilen. Die erste beinhaltet die Entwicklung des Tikhonov-Regularisationsverfahrens für die Analyse von EXAFS-Spektren von Mehrkomponentensystemen, insbesondere die Wahl bestimmter Regularisationsparameter und den Einfluss von Mehrfachstreuung, experimentell bedingtem Rauschen, etc. auf die Strukturparameter. Der zweite Teil beinhaltet die Speziation von sorbiertem U(VI) und Pu(III)/Pu(IV) an Kaolinit, basierend auf experimentellen EXAFS-Spektren, die mit Hilfe des modifizierten Tikhonov-Regularisationsverfahren ausgewertet und mit Hilfe konventioneller EXAFS-Analyse durch „Least-Squares-Fit“ bestätigt wurden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der vorliegenden Arbeit werden zwei physikalischeFließexperimente an Vliesstoffen untersucht, die dazu dienensollen, unbekannte hydraulische Parameter des Materials, wiez. B. die Diffusivitäts- oder Leitfähigkeitsfunktion, ausMeßdaten zu identifizieren. Die physikalische undmathematische Modellierung dieser Experimente führt auf einCauchy-Dirichlet-Problem mit freiem Rand für die degeneriertparabolische Richardsgleichung in derSättigungsformulierung, das sogenannte direkte Problem. Ausder Kenntnis des freien Randes dieses Problems soll dernichtlineare Diffusivitätskoeffizient derDifferentialgleichung rekonstruiert werden. Für diesesinverse Problem stellen wir einOutput-Least-Squares-Funktional auf und verwenden zu dessenMinimierung iterative Regularisierungsverfahren wie dasLevenberg-Marquardt-Verfahren und die IRGN-Methode basierendauf einer Parametrisierung des Koeffizientenraumes durchquadratische B-Splines. Für das direkte Problem beweisen wirunter anderem Existenz und Eindeutigkeit der Lösung desCauchy-Dirichlet-Problems sowie die Existenz des freienRandes. Anschließend führen wir formal die Ableitung desfreien Randes nach dem Koeffizienten, die wir für dasnumerische Rekonstruktionsverfahren benötigen, auf einlinear degeneriert parabolisches Randwertproblem zurück.Wir erläutern die numerische Umsetzung und Implementierungunseres Rekonstruktionsverfahrens und stellen abschließendRekonstruktionsergebnisse bezüglich synthetischer Daten vor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die grundlegenden Prinzipien und Möglichkeiten der Oberflächencharakterisierung mittels ToF-SIMS (Flugzeit-Sekundärionen Massenspektrometrie) werden an ausgewählten Beispielen aus einem aktuell laufenden und vom BMBF geförderten Verbundforschungsprojekt (Fkz: 03N8022A) zum Thema Nanofunktionalisierung von Grenzflächen vorgestellt. Ein Schwerpunkt innerhalb des Projekts stellen die nichtgeschlossenen Schichtsysteme dar, die entweder über Domänenstrukturen oder einer definierten Einzelfunktionalisierung neuartige funktionelle Oberflächen bereitstellen. Mithilfe der sehr oberflächensensitiven ToF-SIMS Methode sowie der Möglichkeit einer graphischen Darstellung lateraler Molekülionenverteilungen auf funktionalisierten Oberflächen können Informationen über Struktur und Belegungsdichte der Funktionsschicht gewonnen werden. Die Kombination des ToF-SIMS Experimentes und eines multivariaten Algorithmus (partial least squares, PLS) liefert eine interessante Möglichkeit zur quantitativen und simultanen Bestimmung von Oberflächeneigenschaften (Element- und molekulare Konzentrationen sowie Kontaktwinkelwerte). Da das ToF-SIMS Spektrum einer plasmafunktionalisierten Oberfläche im Allgemeinen eine Vielzahl unterschiedlicher Fragmentsignale enthält, lässt eine einfache eindimensionale Korrelation (z.B. CF3 - Fragmentintensität ßà CF3-Konzentration) den größten Teil der im Spektrum prinzipiell enthaltenen Information unberücksichtigt. Aufgrund der großen Anzahl von atomaren und molekularen Signalen, die repräsentativ für die chemische Struktur der analysierten Oberflächen sind, ist es sinnvoll, diese Fülle von Informationen zur Quantifizierung der Oberflächeneigenschaften (Elementkonzentrationen, Kontaktwinkel etc.) zu verwenden. Zusätzlich ermöglicht diese Methode eine quantitative Bestimmung der Oberflächeneigenschaften auf nur µm-großen Bereichen. Das ist vorteilhaft für Untersuchungen chemisch strukturierter Oberflächen, da die Größe der Strukturierung für viele Anwendungen in einem Bereich von mehreren µm liegt. Anhand eines Beispieles aus dem biologisch-medizinischen Fachgebiet, soll der erfolgreiche Einsatz multivariater Modelle aufgezeigt werden. In diesem Experiment wurden menschlichen Bindegewebs- (Fibroblasten) und Pankreaszellen auf plasmafunktionalisiserten Oberflächen kultiviert, um die Beeinflussung der Funktionalisierung auf das Zellwachstum zu untersuchen. Die plasmabehandelten Oberflächen wurden durch die Verwendung von TEM-Gittern mit µm-großen Öffnungen chemisch strukturiert und das Wachstumsverhalten der Zellen beobachtet. Jedem dieser µm-großen Bereiche können mithilfe der multivariaten Modelle quantitative Größen zugeordnet werden (Konzentrationen und Kontaktwinkelwerte), die zur Interpretation des Wachstumsverhaltens der Zellen beitragen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Arbeit behandelt das Problem der Skalierbarkeit von Reinforcement Lernen auf hochdimensionale und komplexe Aufgabenstellungen. Unter Reinforcement Lernen versteht man dabei eine auf approximativem Dynamischen Programmieren basierende Klasse von Lernverfahren, die speziell Anwendung in der Künstlichen Intelligenz findet und zur autonomen Steuerung simulierter Agenten oder realer Hardwareroboter in dynamischen und unwägbaren Umwelten genutzt werden kann. Dazu wird mittels Regression aus Stichproben eine Funktion bestimmt, die die Lösung einer "Optimalitätsgleichung" (Bellman) ist und aus der sich näherungsweise optimale Entscheidungen ableiten lassen. Eine große Hürde stellt dabei die Dimensionalität des Zustandsraums dar, die häufig hoch und daher traditionellen gitterbasierten Approximationsverfahren wenig zugänglich ist. Das Ziel dieser Arbeit ist es, Reinforcement Lernen durch nichtparametrisierte Funktionsapproximation (genauer, Regularisierungsnetze) auf -- im Prinzip beliebig -- hochdimensionale Probleme anwendbar zu machen. Regularisierungsnetze sind eine Verallgemeinerung von gewöhnlichen Basisfunktionsnetzen, die die gesuchte Lösung durch die Daten parametrisieren, wodurch die explizite Wahl von Knoten/Basisfunktionen entfällt und so bei hochdimensionalen Eingaben der "Fluch der Dimension" umgangen werden kann. Gleichzeitig sind Regularisierungsnetze aber auch lineare Approximatoren, die technisch einfach handhabbar sind und für die die bestehenden Konvergenzaussagen von Reinforcement Lernen Gültigkeit behalten (anders als etwa bei Feed-Forward Neuronalen Netzen). Allen diesen theoretischen Vorteilen gegenüber steht allerdings ein sehr praktisches Problem: der Rechenaufwand bei der Verwendung von Regularisierungsnetzen skaliert von Natur aus wie O(n**3), wobei n die Anzahl der Daten ist. Das ist besonders deswegen problematisch, weil bei Reinforcement Lernen der Lernprozeß online erfolgt -- die Stichproben werden von einem Agenten/Roboter erzeugt, während er mit der Umwelt interagiert. Anpassungen an der Lösung müssen daher sofort und mit wenig Rechenaufwand vorgenommen werden. Der Beitrag dieser Arbeit gliedert sich daher in zwei Teile: Im ersten Teil der Arbeit formulieren wir für Regularisierungsnetze einen effizienten Lernalgorithmus zum Lösen allgemeiner Regressionsaufgaben, der speziell auf die Anforderungen von Online-Lernen zugeschnitten ist. Unser Ansatz basiert auf der Vorgehensweise von Recursive Least-Squares, kann aber mit konstantem Zeitaufwand nicht nur neue Daten sondern auch neue Basisfunktionen in das bestehende Modell einfügen. Ermöglicht wird das durch die "Subset of Regressors" Approximation, wodurch der Kern durch eine stark reduzierte Auswahl von Trainingsdaten approximiert wird, und einer gierigen Auswahlwahlprozedur, die diese Basiselemente direkt aus dem Datenstrom zur Laufzeit selektiert. Im zweiten Teil übertragen wir diesen Algorithmus auf approximative Politik-Evaluation mittels Least-Squares basiertem Temporal-Difference Lernen, und integrieren diesen Baustein in ein Gesamtsystem zum autonomen Lernen von optimalem Verhalten. Insgesamt entwickeln wir ein in hohem Maße dateneffizientes Verfahren, das insbesondere für Lernprobleme aus der Robotik mit kontinuierlichen und hochdimensionalen Zustandsräumen sowie stochastischen Zustandsübergängen geeignet ist. Dabei sind wir nicht auf ein Modell der Umwelt angewiesen, arbeiten weitestgehend unabhängig von der Dimension des Zustandsraums, erzielen Konvergenz bereits mit relativ wenigen Agent-Umwelt Interaktionen, und können dank des effizienten Online-Algorithmus auch im Kontext zeitkritischer Echtzeitanwendungen operieren. Wir demonstrieren die Leistungsfähigkeit unseres Ansatzes anhand von zwei realistischen und komplexen Anwendungsbeispielen: dem Problem RoboCup-Keepaway, sowie der Steuerung eines (simulierten) Oktopus-Tentakels.