7 resultados para Metabolism - Regulation

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Das Milchsäurebakterium Oenococcus oeni, welches für den biologischen Säureabbau im Wein eingesetzt wird, verstoffwechselt Hexosen über den Phosphoketolaseweg. Dabei können beträchtliche Mengen Acetat entstehen. Die Ursachen dafür wurden untersucht, insbesondere der Fructosestoffwechsel. Außerdem wurde der Hexosetransport untersucht, über den bei O. oeni noch nichts bekannt war. Die Aufnahme von Hexosen in die Zelle erfolgt mit hoher Affinität (KM=10 µM) über einen Symport mit H+, aber mit sehr niedriger spezifischer Aktivität (Vmax=9 U / g TG). Zusätzlich werden Hexosen mit ausreichender Aktivität über (vermutlich erleichterte) Diffusion in die Zelle transportiert, allerdings nur bei hohen Hexosekonzentrationen. Es wurden Gene gefunden, die für ein Hexose- Phosphotransferasesystem kodieren, welches in O. oeni keine bedeutende Rolle beim Transport spielt, aber vermutlich eine regulative Funktion hat. Zur Bildung von Essigsäure tragen verschiedene Faktoren bei: Der Ethanolweg, der in der heterofermentativen Milchsäuregärung die Reoxidation von NAD(P)H bewerkstelligt, ist durch die niedrige spezifische Aktivität der Acetaldehyddehydrogenase limitiert. Diese Limitierung wird noch verstärkt, wenn die zellulären Gehalte von Coenzym A aufgrund von Pantothensäuremangel niedrig sind. O. oeni umgeht durch Bildung von Erythrit die Limitierung, und Acetylphosphat wird nicht zu Ethanol reduziert, sondern als Acetat ausgeschieden. Bei Cofermentation von Hexosen mit externen Elektronenakzeptoren, wie Fructose, Pyruvat oder Sauerstoff, werden letztere zur Reoxidation von NAD(P)H genutzt, und als Folge wird Acetat ausgeschieden. Der Fluss von Fructose in den Phosphoketolaseweg wird durch das Enzym Phosphoglucoseisomerase verhindert, wenn dieses durch 6-Phosphogluconat gehemmt wird. Als Konsequenz wird Fructose im Mannitweg reduziert, was die Bildung von Essigsäure im Phosphoketolaseweg fördert. Bei niedrigen Wachstums- und Stoffwechselraten, z.B. bei C-Limitierung, ist der Ethanolweg nicht limitierend für den Stoffwechsel, und Hexosen werden über heterofermentative Milchsäuregärung umgesetzt, ohne daß Acetat entsteht. Pyruvat kann gleichzeitig als Elektronenakzeptor und als Energiequelle dienen: O. oeni ist in der Lage, Pyruvat mittels Disproportionierung zu Lactat und Acetat+CO2 zu fermentieren, und dabei Energie zu konservieren (0,5 ATP / Pyruvat).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochrome P450 1A1 (CYP1A1) monooxygenase plays an important role in the metabolism of environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) and halogenated polycyclic aromatic hydrocarbons (HAHs). Oxidation of these compounds converts them to the metabolites that subsequently can be conjugated to hydrophilic endogenous entities e.g. glutathione. Derivates generated in this way are water soluble and can be excreted in bile or urine, which is a defense mechanism. Besides detoxification, metabolism by CYP1A1 may lead to deleterious effects since the highly reactive intermediate metabolites are able to react with DNA and thus cause mutagenic effects, as it is in the case of benzo(a) pyrene (B[a]P). CYP1A1 is normally not expressed or expressed at a very low level in the cells but it is inducible by many PAHs and HAHs e.g. by B[a]P or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Transcriptional activation of the CYP1A1 gene is mediated by aryl hydrocarbon receptor (AHR), a basic-helix-loop-helix (bHLH) transcription factor. In the absence of a ligand AHR stays predominantly in the cytoplasm. Ligand binding causes translocation of AHR to the nuclear compartment, its heterodimerization with another bHLH protein, the aryl hydrocarbon nuclear translocator (ARNT) and binding of the AHR/ARNT heterodimer to a DNA motif designated dioxin responsive element (DRE). This process leads to the transcriptional activation of the responsive genes containing DREs in their regulatory regions, e.g. that coding for CYP1A1. TCDD is the most potent known agonist of AHR. Since it is not metabolized by the activated enzymes, exposure to this compound leads to a persisting activation of AHR resulting in diverse toxic effects in the organism. To enlighten the molecular mechanisms that mediate the toxicity of xenobiotics like TCDD and related compounds, the AHR-dependent regulation of the CYP1A1 gene was investigated in two cell lines: human cervix carcinoma (HeLa) and mouse hepatoma (Hepa). Study of AHR activation and its consequence concerning expression of the CYP1A1 enzyme confirmed the TCDD-dependent formation of the AHR/ARNT complex on DRE leading to an increase of the CYP1A1 transcription in Hepa cells. In contrast, in HeLa cells formation of the AHR/ARNT heterodimer and binding of a protein complex containing AHR and ARNT to DRE occurred naturally in the absence of TCDD. Moreover, treatment with TCDD did not affect the AHR/ARNT dimer formation and binding of these proteins to DRE in these cells. Even though the constitutive complex on DRE exists in HeLa, transcription of the CYP1A1 gene was not increased. Furthermore, the CYP1A1 level in HeLa cells remained unchanged in the presence of TCDD suggesting repressional mechanism of the AHR complex function which may hinder the TCDD-dependent mechanisms in these cells. Similar to the native, the mouse CYP1A1-driven reporter constructs containing different regulatory elements were not inducible by TCDD in HeLa cells, which supported a presence of cell type specific trans-acting factor in HeLa cells able to repress both the native CYP1A1 and CYP1A1-driven reporter genes rather than species specific differences between CYP1A1 genes of human and rodent origin. The different regulation of the AHR-mediated transcription of CYP1A1 gene in Hepa and HeLa cells was further explored in order to elucidate two aspects of the AHR function: (I) mechanism involved in the activation of AHR in the absence of exogenous ligand and (II) factor that repress function of the exogenous ligand-independent AHR/ARNT complex. Since preliminary studies revealed that the activation of PKA causes an activation of AHR in Hepa cells in the absence of TCDD, the PKA-dependent signalling pathway was the proposed endogenous mechanism leading to the TCDD-independent activation of AHR in HeLa cells. Activation of PKA by forskolin or db-cAMP as well as inhibition of the kinase by H89 in both HeLa and Hepa cells did not lead to alterations in the AHR interaction with ARNT in the absence of TCDD and had no effect on binding of these proteins to DRE. Moreover, the modulators of PKA did not influence the CYP1A1 activity in these cells in the presence and in the absence of TCDD. Thus, an involvement of PKA in the regulation of the CYP1A1 Gen in HeLa cells was not evaluated in the course of this study. Repression of genes by transcription factors bound to their responsive elements in the absence of ligands has been described for nuclear receptors. These receptors interact with protein complex containing histone deacetylase (HDAC), enzyme responsible for the repressional effect. Thus, a participation of histone deacetylase in the transcriptional modulation of CYP1A1 gene by the constitutively DNA-bound AHR/ARNT complex was supposed. Inhibition of the HDAC activity by trichostatin A (TSA) or sodium butyrate (NaBu) led to an increase of the CYP1A1 transcription in the presence but not in the absence of TCDD in Hepa and HeLa cells. Since amount of the AHR and ARNT proteins remained unchanged upon treatment of the cells with TSA or NaBu, the transcriptional upregulation of CYP1A1 gene was not due to an increased expression of the regulatory proteins. These findings strongly suggest an involvement of HDAC in the repression of the CYP1A1 gene. Similar to the native human CYP1A1 also the mouse CYP1A1-driven reporter gene transfected into HeLa cells was repressed by histone deacetylase since the presence of TSA or NaBu led to an increase in the reporter activity. Induction of reporter gene did not require a presence of the promoter or negative regulatory regions of the CYP1A1 gene. A promoter-distal fragment containing three DREs together with surrounding sequences was sufficient to mediate the effects of the HDAC inhibitors suggesting that the AHR/ARNT binding to its specific DNA recognition site may be important for the CYP1A1 repression. Histone deacetylase is recruited to the specific genes by corepressors, proteins that bind to the transcription factors and interact with other members of the HDAC complex. Western blot analyses revealed a presence of HDAC1 and the corepressors mSin3A (mammalian homolog of yeast Sin3) and SMRT (silencing mediator for retinoid and thyroid hormone receptor) in both cell types, while the corepressor NCoR (nuclear receptor corepressor) was expressed exclusively in HeLa cells. Thus the high inducibility of CYP1A1 in Hepa cells may be due to the absence of NCoR in these cells in contrast to the non-responsive HeLa cells, where the presence of NCoR would support repression of the gene by histone deacetylase. This hypothesis was verified in reporter gene experiments where expression constructs coding for the particular members of the HDAC complex were cotransfected in Hepa cells together with the TCDD-inducible reporter constructs containing the CYP1A1 regulatory sequences. An overexpression of NCoR however did not decrease but instead led to a slight increase of the reporter gene activity in the cells. The expected inhibition was observed solely in the case of SMRT that slightly reduced constitutive and TCDD-induced reporter gene activity. A simultaneous expression of NCoR and SMRT shown no further effects and coexpression of HDAC1 with the two corepressors did not alter this situation. Thus, additional factors that are likely involved in the repression of CYP1A1 gene by HDAC complex remained to be identified. Taking together, characterisation of an exogenous ligand independent AHR/ARNT complex on DRE in HeLa cells that repress transcription of the CYP1A1 gene creates a model system enabling investigation of endogenous processes involved in the regulation of AHR function. This study implicates HDAC-mediated repression of CYP1A1 gene that contributes to the xenobiotic-induced expression in a tissue specific manner. Elucidation of these processes gains an insight into mechanisms leading to deleterious effects of TCDD and related compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polyzyklische aromatische Kohlenwasserstoffe (PAK) sind ubiquitäre Verschmutzungen der Umwelt und entstehen während der unvollständigen Verbrennung organischen Materials wie Holz, Kohle und Erdöl. Werden diese chemisch nicht reaktiven PAK in den Körper aufgenommen, durchlaufen sie eine Reihe von enzymatischen Umsetzungen, die unter der Bezeichnung Fremdstoffmetabolismus zusammengefasst werden. Die chemische Umsetzung des PAK und Prokarzinogens Benzo[a]pyren (B[a]P) führt u.a. zur Bildung des reaktiven Metaboliten B[a]P-7,8-dihydrodiol-9,10-epoxid (BPDE). BPDE ist stark elektrophil und kann auf Grund dieser Eigenschaft an nukleophile Makromoleküle wie Proteine und DNA binden. Die Bildung von BPDE-DNA-Addukten resultiert in der Entstehung von Mutationen und kann zur Tumorbildung führen. Im Rahmen der vorliegenden Arbeit sollte die Wirkung von BPDE als Modellsubstanz für gentoxische Agenzien auf intrazelluläre Signalkaskaden und die Konsequenzen der BPDE-Exposition bezüglich der Zellaktivität untersucht werden. Es konnte gezeigt werden, dass BPDE-Behandlung von Mausfibroblasten eine intrazelluläre Signalkaskade induziert, welche zur Aktivierung der Stressaktivierten Proteinkinasen (SAPK) JNK und p38 führt. An dieser Signalkaskade sind Src-ähnliche Kinasen beteiligt. BPDE-Behandlung führt in den untersuchten Mausfibroblasten zur Induktion von DNA-Einzelstrangbrüchen, deren Auftreten zeitlich mit der SAPK-Aktivierung korreliert. Die BPDEinduzierten DNA-Strangbrüche sind die Folge der Entfernung dieser Läsionen aus dem Genom durch die Nukleotidexzisionsreparatur (NER). Erkannt werden BPDE-DNA-Addukte durch die NERProteine XPA und XPC (Xeroderma Pigmentosum Komplementationsgruppe A und C). Nach der Erkennung von BPDE-DNA-Addukten kommt es zur Rekrutierung von Nukleasen, welche die vorliegende Läsion und umliegende Nukleotide aus dem Genom entfernen. In XPA- und XPCdefizienten Mausfibroblasten induziert BPDE daher keine DNA-Strangbrüche. Jedoch ist nur in XPCdefizienten Zellen, aber nicht in XPA-defizienten Zellen, die SAPK-Aktivierung drastisch reduziert. Behandlung von Mausfibroblasten mit Benzo[c]phenanthren-3,4-Diol-1,2-Epoxid, einem PAK, dessen DNA-Addukte schlecht durch NER-Faktoren erkannt und repariert werden, führt zu keiner SAPKAktivierung. Die Aktivierung von p38 und JNK scheint demnach abhängig zu sein von der Erkennung des primären DNA-Schadens. Die XPC-abhängige SAPK-Aktivierung schützt die Zellen vor BPDEabhängiger Toxizität, da sowohl XPC- als auch p38-defiziente Mausfibroblasten eine höhere Sensitivität gegenüber BPDE zeigen als korrespondierende Wildtypzellen. Zusamenfassend konnte in dieser Arbeit ein neuer Signalweg beschrieben werden, in dem DNASchäden, verursacht durch BPDE, über die XPC-abhängige DNA-Schadenserkennung, die Aktivierung der SAPK induziert. Diese Aktivierung der SAPK schützt vor BPDE-induzierter Toxizität.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flugfähige Insekten sind äußerst leistungsfähige Tiere. Ihre Flugmuskulatur ist das Gewebe mit der höchsten ATP-Umsatzrate im Tierreich. Der hohe Energieumsatz ist möglich durch einen vollständig aeroben Stoffwechsel der Flugmuskulatur, der durch die effiziente Sauerstoffversorgung über das Tracheensystem gewährleistet wird. Andererseits haben Insekten einen offenen Blutkreislauf, d.h. ihre Gewebe werden nicht über Kapillaren mit Substraten versorgt, sondern von der Hämolymphe umspült, die daher eine hohe Konzentration an energieliefernden Substraten haben muss. Als schnell verfügbares Substrat nutzen Wanderheuschrecken bei Beginn eines Fluges als Hauptsubstrat Trehalose, die in hoher Konzentration als Hämolymphzucker vorliegt (20 bis 40mal höhere Konzentration als Glucose). Trehalose ist, anders als Glucose, ein nicht-reduzierender Zucker und daher nicht toxisch. Allerdings muss das Disaccharid Trehalose zu Glucose hydrolysiert werden, bevor sie im Zellstoffwechsel verwertet werden kann. Diese Funktion erfüllt die Trehalase (EC 3.2.1.28), ein Enzym, das membrangebunden ist und nach Zellfraktionierung in der Mikrosomenfraktion erscheint. Es ist schon lange offensichtlich, dass die Aktivität der Trehalase regulierbar sein muss und zwar reversibel (eine Eigenschaft, die für Hydrolasen ungewöhnlich ist), der Mechanismus ist allerdings bislang nicht klar, da alle üblichen Typen von Aktivitätsregulation nicht verwirklicht zu sein scheinen. Die meisten Autoren vermuten, dass die Regulation über den Transport des Substrats erfolgt. Ein Trehalosetransporter konnte allerdings bisher in der Flugmuskulatur von Locusta nicht nachgewiesen werden. In dieser Arbeit stelle ich Experimente vor, die dafür sprechen, dass Trehalase als Ektoenzym aktiv ist (overte Form), während eine inaktive Form (latente Form) in Vesikeln im Cytoplasma vorliegt und per Exocytose reversibel in die Plasmamembran transloziert werden kann. Für die Testung dieser Arbeitshypothese nutzte ich Trehazolin, einen sehr spezifischen Inhibitor der Trehalase, der äußerst fest und dauerhaft im aktiven Zentrum des Enzyms bindet. Dazu war es nötig, die Flugmuskulatur zu fraktionieren, um die Effekte von Trehazolin auf die verschiedenen Formen der Trehalase (gebunden, löslich, overt, latent) zu analysieren. Mit der Arbeitshypothese vereinbar sind die folgenden Befunde: (1) In die Hämolymphe injiziertes Trehazolin hemmt bevorzugt die overte Trehalase und erst bei höheren Dosen und nach längerer Zeit die latente Form. (2) Trehazolin wirkt in hoher Dosis (50µg pro Tier) auch nach Verfütterung, allerdings stark abgeschwächt, da nach 24 Stunden ein signifikanter Effekt nur auf die overte, aber nicht auf die latente Form sichtbar war. (3) In einem Langzeitversuch über 30 Tage führte die einmalige Injektion von 20µg Trehazolin zu einer schnellen Hemmung der overten Trehalase, der eine verzögerte Hemmung der latenten Aktivität folgte. Der Zeitverlauf von Hemmung und Erholung spricht für eine Vorläufer-Produkt-Beziehung zwischen latenter und overter Form. (4) Flugaktivität der Tiere führt zu einer starken Verminderung der latenten Aktivität, falls Trehazolin in der Hämolymphe der Tiere vorhanden war. (5) Neuropeptide könnten die Translokation fördern. Insulin hat einen entsprechenden Effekt, der aber unabhängig ist von der Flugaktivität. (6) Der PI3-Kinasehemmstoff Wortmannin stabilisiert die latente Form der Trehalase. Auch andere Organe als die Flugmuskulatur besitzen Trehalase, aber mit deutlich geringerer Aktivität. In der Sprungmuskulatur könnte auch eine latente Form vorhanden sein, für Darm und Gehirn ist das nicht wahrscheinlich.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit sollte der Einfluss des Mevalonatpfads auf die Expression von Selenoproteinen untersucht werden. Im Mevalonatpfad, einem universellen Stoffwechselweg eukaryontischer Zellen, entstehen neben Cholesterol auch verschiedene Isoprenoide, die z.B. für die post-transkriptionelle Modifikation der Selenocystein-tRNA herangezogen werden. Selenocystein ist funktioneller Bestandteil von Selenoproteinen, welche häufig in den Abbau von oxidativem Stress involviert sind. rnDer Mevalonatpfad wird hauptsächlich durch die HMG-CoA-Reduktase (HMGCR) reguliert. Pharmaka vom „Statin“-Typ gelten als wirkungsvolle kompetitive Inhibitoren dieses Enzyms und finden ihren Einsatz bei Patienten zur Behandlung von Hypercholesterolämie, welche eine Grundlage für vaskuläre Krankheiten bildet. Trotz der allgemein guten Verträglichkeit der Statine treten jedoch auch unerwünschte Nebeneffekte, wie Erhöhung der Leberenzyme oder Myopathien auf, deren biochemischer Hintergrund bislang noch im Dunkeln liegt. rnDie in dieser Arbeit durchgeführten Experimente belegen, dass Atorvastatin, Cerivastatin und Lovastatin in klinisch relevanten Dosen die Synthese bestimmter Selenoproteine, wie der Glutathionperoxidase (GPx), in klonalen humanen Hepatocyten post-transkriptionell unterdrücken, wodurch die Zellen anfälliger für oxidativen Stress in Form von Peroxiden werden. Dieser Mechanismus könnte eine Erklärung für die häufig beobachteten abnormen Leberwerte von Statin-behandelten Patienten darstellen.rnEndogenes Cholesterol gilt ebenfalls als potenter Inhibitor der HMGCR. Die in dieser Arbeit erzielten Ergebnisse zeigen, dass Cholesterol in verschiedenen Formen, als Low-Density-Lipoprotein (LDL), als 25-Hydroxycholesterol, und als Methylcyclodextrin-Komplex in unterschiedlichen humanen Zelltypen die Selenoproteinsynthese ebenfalls unterdrücken. Der negative Zusammenhang zwischen Cholesterol und bestimmten Selenoproteinen konnte auch in vivo beobachtet werden. In juvenilen Mäusen konnte gezeigt werden, dass ein Knockout des LDL-Rezeptors sowie auch ein Knockout von Apolipoprotein E zu einer Senkung des Lebercholesterols führte, was in einer Zunahme der GPx in der Leber resultierte.rnDie vorliegenden Daten belegen erstmals einen direkten und funktionellen Zusammenhang zwischen dem Mevalonatpfad und der Selenoproteinsynthese. Unterdrückung dieses Pfades, entweder durch exogene Substanzen wie Statine, oder durch endogene Substanzen wie Cholesterol, hat offenbar zur Folge, dass essentielle Zwischenprodukte für die Modifizierung der Selenocystein-tRNA fehlen, was in einer post-transkriptionellen Verminderung der induzierbaren Selenoproteine resultiert. Dies könnte die biochemische Grundlage für einen Teil der vielfältigen gesundheitlich negativen Auswirkungen schon geringfügig erhöhter Cholesterolspiegel sein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Leber und Dünndarm bauen CYP3A-Enzyme eine Vielzahl von Fremdstoffen ab, die in den Körper gelangt sind. Zudem aber sind diese Enzyme auch in anderen Organen, wie der Haut exprimiert. Doch weder die genaue Zusammensetzung der CYP3A-Isozyme noch deren physiologische Rolle in der Haut sind bisher bekannt. Basierend auf begrenzten in vitro-Daten ist eine Rolle der CYP3A in der kutanen Vitamin D-Synthese denkbar. Auf der anderen Seite könnten die kutanen CYP3A auch lokal oder systemisch verabreichte Medikamente in der Haut verstoffwechseln und so zur Entstehung immunologischer und nicht-immunologischer unerwünschter Arzneimittelwirkungen beitragen, von denen sich bis zu 45 % in der Haut manifestieren.rnDie Arbeitshypothese dieses Projekts war, dass die CYP3A die kutane Synthese von Vitamin D regulieren. In dieser Funktion wurden sie zur Vermeidung von Vitamin D-Mangel-Erkrankungen wie Rachitis oder Osteomalazie in Europäern negativ selektiert. rnDie Expression und Regulation der CYP3A wurde in Hautbiopsien, einer Zelllinie epidermalen Ursprungs und primären Hautzellen wie auch in transgenen Mäusen untersucht. Die metabolische Aktivität der CYP3A gegenüber den kutanen Vitamin D-Vorstufen wurde mit Hilfe rekombinant exprimierter Enzyme untersucht. CYP3A5-mRNA war die häufigste der CYP3A in humanen Hautproben und überstieg die von CYP3A4 um das Dreifache, die von CYP3A7 um das 130-Fache. Damit entsprach diese 1,3 %, 0,01 % bzw. 0,01 % der jeweiligen hepatischen Genexpression. Die Expression von CYP3A43 war zu vernachlässigen. CYP3A5 zeigte eine bimodale Expression sowohl auf mRNA- als auch auf Proteinebene. So zeigten Träger der Wildtyp-Allels *1 eine 3,3-fach höhere mRNA- und 1,8-fach höhere Proteinmenge als homozygote Träger des Nullallels *3. CYP3A4/7- und CYP3A5-Protein wurde v. a. in den Keratinozyten der Epidermis und den Talgdrüsen, also den Bereichen der kutanen Vitamin D-Synthese lokalisiert. Die CYP3A5-Expression wurde ferner in der Haut transgener Mäusen gezeigt, die das Reportergen Luziferase unter Kontrolle des humanen CYP3A5-Promoters exprimieren. Verglichen mit der Leber war die kutane Expression des Vitamin D-Rezeptors (VDR) 100-fach höher, die der Xenosensoren CAR und PXR vergleichbar bzw. zu vernachlässigen. Dementsprechend erhöhte die Behandlung mit 1,25-Dihydroxyvitamin D, dem aktiven Vitamin D-Hormon, und dessen Vorstufen außer 7-Dehydrocholesterol, jedoch nicht der PXR-Ligand Rifampicin, die Expression der CYP3A. Wie in Zwei-Hybrid-Experimenten gezeigt, wurden die Effekte des 1,25-Dihydroxyvitamin D und dessen Vorstufen alleinig durch VDR vermittelt. Die Effektstärke hingegen war abhängig von Zellspender, Zellpassage und Zelltypus. Alle drei CYP3A-Isozyme metabolisieren Vitamin D zu einem oder mehreren unbekannten Metaboliten, jedoch nicht zu 25-Hydroxyvitamin D, dem direkten Vorläufer des aktiven Vitamin D. rnZusammengefasst legen die Daten nahe, dass die kutanen CYP3A, allen voran CYP3A5, die Vitamin D-Homöostase durch VDR-vermittelte Induktion des Abbaus von Vitamin D-Vorstufen regulieren. Dies zusammen mit Sequenzdaten liefert starke Indizien für Vitamin D als treibende Kraft der Selektion des CYP3A-Lokus in Europäern. Der Einfluss der CYP3A-Expression auf selektiv wirksame, klinisch relevante Knochenveränderungen wie Rachitis oder Osteomalazie müssen folgen.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Silent mating type information regulation 2 Type" 1 (SIRT1), das humane Homolog der NAD+-abhängigen Histondeacetylase Sir2 aus Hefe, besitzt Schlüsselfunktionen in der Regulation des Metabolismus, der Zellalterung und Apoptose. Letztere wird vor allem durch die Deacetylierung von p53 an Lys382 und der dadurch verringerten Transkription proapoptotischer Zielgene vermittelt. Im Rahmen der vorliegenden Arbeit wurde die SIRT1 Regulation im Zusammenhang mit der DNA-Schadensantwort untersucht.rnIn der Apoptoseregulation übernimmt die Serin/Threonin-Kinase "Homeodomain interacting protein kinase" 2 (HIPK2) eine zentrale Rolle und daher wurde die SIRT1 Modifikation und Regulation durch HIPK2 betrachtet. Durch Phosphorylierung des Tumorsuppressorproteins p53 an Ser46 aktiviert HIPK2 das Zielprotein und induziert die Transkription proapoptotischer Zielgene von p53. Es wurde beschrieben, dass HIPK2 nach DNA-Schädigung über einen bisher unbekannten Mechnismus die Acetylierung von p53 potenzieren kann.rnIn der vorliegenden Arbeit konnte gezeigt werden, dass SIRT1 von HIPK2 in vitro und in Zellen an Serin 27 und 682 phosphoryliert wird. Weiterhin ist die Interaktion von SIRT1 mit HIPK2 sowie die SIRT1 Phosphorylierung an Serin 682 durch DNA-schädigende Adriamycinbehandlung erhöht. Es gibt Hinweise, dass HIPK2 die Expression von SIRT1 reguliert, da HIPK2 RNA-Interferenz zur Erniedrigung der SIRT1 Protein- und mRNA-Mengen führt.rnEin weiterer interessanter Aspekt liegt in der Beobachtung, dass Ko-Expression von PML-IV, welches SIRT1 sowie HIPK2 in PML-Kernkörper rekrutiert, die SIRT1 Phosphorylierung an Serin 682 verstärkt. Phosphorylierung von SIRT1 an Serin 682 interferiert wiederum mit der SUMO-1 Modifikation, welche für die Lokalisation in PML-Kernkörpen wichtig ist.rnBemerkenswerterweise reduziert die DNA-schadendsinduzierte SIRT1 Phosphorylierung die Bindung des SIRT1 Ko-Aktivators AROS, beeinflusst aber nicht diejenige des Inhibitors DBC1. Dies führt zur Reduktion der enzymatischen Aktivität von SIRT1 und der darausfolgenden weniger effizienten Deacetylierung des Zielproteins p53.rnDurch die von mir in der vorliegenden Promotionsarbeit erzielten Ergebnisse konnte ein neuer molekularer Mechanismus entschlüsselt werden, welcher die durch HIPK2 modulierte Acetylierung von p53 und die daran anschließende Induktion der Apoptose beschreibt.rnHIPK2-vermittelte SIRT1 Phosphorylierung resultiert in einer verminderten Deacetylasefunktion von SIRT1 und führt so zu einer verstärkten acetylierungsinduzierten Expression proapoptotischer p53 Zielgene.