1 resultado para Malignant biliary obstruction
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Intersection theory on moduli spaces has lead to immense progress in certain areas of enumerative geometry. For some important areas, most notably counting stable maps and counting stable sheaves, it is important to work with a virtual fundamental class instead of the usual fundamental class of the moduli space. The crucial prerequisite for the existence of such a class is a two-term complex controlling deformations of the moduli space. Kontsevich conjectured in 1994 that there should exist derived version of spaces with this specific property. Another hint at the existence of these spaces comes from derived algebraic geometry. It is expected that for every pair of a space and a complex controlling deformations of the space their exists, under some additional hypothesis, a derived version of the space having the chosen complex as cotangent complex. In this thesis one version of these additional hypothesis is identified. We then show that every space admitting a two-term complex controlling deformations satisfies these hypothesis, and we finally construct the derived spaces.