5 resultados para MODIFIED IN-SITU PROCESSES
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Ice clouds have a strong effect on the Earth-atmosphere radiative energy balance, on the distribution of condensable gases in the atmosphere, as well as on the chemical composition of the air. The ice particles in these clouds can take on a variety of shapes which makes the description of the cloud microphysical properties more difficult. In the tropical upper troposphere/lower stratosphere (UTLS), a region where ice cloud abundance is relatively high, different types of ice clouds can be observed. However, in situ measurements are rare due to the high altitude of these clouds and the few available research aircraft, only three worldwide, that can fly at such altitudes.rnThis work focuses on in situ measurements of the tropical UTLS clouds performedrnwith a Cloud Imaging Probe (CIP) and a Forward Scattering Spectrometer Probern(FSSP-100), whereof the CIP is the key instrument of this thesis. The CIP is anrnairborne in situ instrument that obtains two-dimensional shadow images of cloud particles. Several cloud microphysical parameters can be derived from these measurements, e.g. number concentrations and size distributions. In order to obtain a high quality data set, a careful image analysis and several corrections need to be applied to the CIP observations. These methods are described in detail.rnMeasurements within the tropical UTLS have been performed during two campaigns:rnSCOUT-O3, 2005 in Northern Australia and SCOUT-AMMA, 2006 inWest Africa. Thernobtained data set includes first observations of subvisible cirrus clouds over a continental area and observations of the anvils of deep convective clouds. The latter can be further divided into clouds in mesoscale convective system outflows of different ages and clouds in overshooting cloud turrets that even penetrated the stratosphere. The microphysical properties of these three cloud types are discussed in detail. Furthermore, the vertical structure of the ice clouds in the UTLS is investigated. The values of the microphysical parameters were found to decrease with increasing altitude in the upper troposphere. Particle numbers and maximum sizes were also decreasing with increasing age of the outflow clouds. Further differences between the deep convective clouds and subvisible cirrus were found in the particle morphology as well as in the ratio of the observed aerosol particles to cloud particles which indicates that the different freezing processes (deposition, contact, immersion freezing) play different roles in the formation of the respective clouds. For the achievementrnof a better microphysical characterisation and description numerical fits have been adjusted onto the cloud particle size distributions of the subvisible cirrus as well as on the size distributions of the clouds at different altitudes in the UTLS.
Resumo:
Polare Stratosphärenwolken (PSC), die unterhalb einer Temperatur von etwa -78 °C in polaren Regionen auftreten, üben einen starken Einfluss auf die stratosphärische Ozonschicht aus. Dieser Einfluss erfolgt größtenteils über heterogene chemische Reaktionen, die auf den Oberflächen von Wolkenpartikeln stattfinden. Chemische Reaktionen die dabei ablaufen sind eine Voraussetzung für den späteren Ozonabbau. Des Weiteren verändert die Sedimentation der Wolkenpartikel die chemische Zusammensetzung bzw. die vertikale Verteilung der Spurengase in der Stratosphäre. Für die Ozonchemie spielt dabei die Beseitigung von reaktivem Stickstoff durch Sedimentation Salpetersäure-haltiger Wolkenpartikeln (Denitrifizierung) eine wichtige Rolle. Durch gleichen Sedimentationsprozess von PSC Elementen wird der Stratosphäre des weiteren Wasserdampf entzogen (Dehydrierung). Beide Prozesse begünstigen einen länger andauernden stratosphärischen Ozonabbau im polaren Frühling.rnGerade im Hinblick auf die Denitrifikation durch Sedimentation größerer PSC-Partikel werden in dieser Arbeit neue Resultate von in-situ Messungen vorgestellt, die im Rahmen der RECONCILE-Kampagne im Winter des Jahres 2010 an Bord des Höhenforschungs-Flugzeugs M-55 Geophysica durchgeführt wurden. Dabei wurden in fünf Flügen Partikelgrößenverteilungen in einem Größenbereich zwischen 0,5 und 35 µm mittels auf der Lichtstreuung basierender Wolkenpartikel-Spektrometer gemessen. Da polare Stratosphärenwolken in Höhen zwischen 17 und 30 km auftreten, sind in-situ Messungen vergleichsweise selten, so dass noch einige offene Fragen bestehen bleiben. Gerade Partikel mit optischen Durchmessern von bis zu 35µm, die während der neuen Messungen detektiert wurden, müssen mit theoretischen Einschränkungen in Einklang gebracht werden. Die Größe der Partikel wird dabei durch die Verfügbarkeit der beteiligten Spurenstoffe (Wasserdampf und Salpetersäure), die Sedimentationsgeschwindigkeit, Zeit zum Anwachsen und von der Umgebungstemperatur begrenzt. Diese Faktoren werden in der vorliegenden Arbeit diskutiert. Aus dem gemessenen Partikelvolumen wird beispielsweise unter der Annahme der NAT-Zusammensetzung (Nitric Acid Trihydrate) die äquivalente Konzentration des HNO 3 der Gasphase berechnet. Im Ergebnis wird die verfügbare Konzentration von Salpetersäure der Stratosphäre überschritten. Anschließend werden Hypothesen diskutiert, wodurch das gemessene Partikelvolumen überschätzt worden sein könnte, was z.B. im Fall einer starken Asphärizität der Partikel möglich wäre. Weiterhin wurde eine Partikelmode unterhalb von 2-3µm im Durchmesser aufgrund des Temperaturverhaltens als STS (Supercooled Ternary Solution droplets) identifiziert.rnUm die Konzentration der Wolkenpartikel anhand der Messung möglichst genau berechnen zu können, muss das Messvolumen bzw. die effektive Messfläche der Instrumente bekannt sein. Zum Vermessen dieser Messfläche wurde ein Tröpfchengenerator aufgebaut und zum Kalibrieren von drei Instrumenten benutzt. Die Kalibration mittels des Tröpfchengenerators konzentrierte sich auf die Cloud Combination Probe (CCP). Neben der Messfläche und der Größenbestimmung der Partikel werden in der Arbeit unter Zuhilfenahme von Messungen in troposphärischen Wolken und an einer Wolkensimulationskammer auch weitere Fehlerquellen der Messung untersucht. Dazu wurde unter anderem die statistische Betrachtung von Intervallzeiten einzelner Messereignisse, die in neueren Sonden aufgezeichnet werden, herangezogen. Letzteres ermöglicht es, Messartefakte wie Rauschen, Koinzidenzfehler oder „Shattering“ zu identifizieren.rn
Resumo:
Die obere Troposphäre / untere Stratosphäre (UTLS: Upper Troposphere / Lower Stratosphere)ist die Übergangsgregion zwischen den dynamisch, chemisch und mikrophysikalisch sehr verschiedenen untersten Atmosphärenschichten, der Troposphäre und der Stratosphäre. Strahlungsaktive Spurengase, wie zum Beispiel Wasserdampf (H2O), Ozon (O3) oder Kohlenstoffdioxid (CO2), und Wolken in der UTLS beeinflussen das Strahlungsbudget der Atmosphäre und das globale Klima. Mögliche Veränderungen in den Verteilungen und Konzentrationen dieser Spurengase modifizieren den Strahlungsantrieb der Atmosphäre und können zum beobachteten Klimawandel beitragen. Ziel dieser Arbeit ist es, Austausch- und Mischungsprozesse innerhalb der UTLS besser zu verstehen und damit Veränderungen der Spurengaszusammensetzung dieser Region genauer prognostizieren zu können. Grundlage hierfür bilden flugzeuggetragene in-situ Spurengasmessungen in der UTLS, welche während der Flugzeugmesskampagnen TACTS / ESMVal 2012 und AIRTOSS - ICE 2013 durchgeführt wurden. Hierbei wurde bei den Messungen von AIRTOSS - ICE 2013 das im Rahmen dieser Arbeit aufgebaute UMAQS (University of Mainz Airborne QCLbased Spectrometer) - Instrument zur Messung der troposphärischen Spurengase Distickstoffmonoxid (N2O) und Kohlenstoffmonoxid (CO) eingesetzt. Dieses erreicht bei einer zeitlichen Auflösung von 1 s eine Messunsicherheit von 0,39 ppbv und 1,39 ppbv der N2O bzw. CO-Mischungsverhältnisse. Die hohe Zeitauflösung und Messgenauigkeit der N2O- und CO- Daten erlaubt die Untersuchung von kleinskaligen Austauschprozessen zwischen Troposphäre und Stratosphäre im Bereich der Tropopause auf räumlichen Skalen kleiner 200 m. Anhand der N2O-Daten von AIRTOSS - ICE 2013 können in-situ detektierte Zirruspartikel in eisübersättigter Luft oberhalb der N2O-basierten chemischen Tropopause nachgewiesen werden. Mit Hilfe der N2O-CO-Korrelation sowie der Analyse von ECMWF-Modelldaten und der Berechnung von Rückwärtstrajektorien kann deren Existenz auf das irreversible Vermischen von troposphärischen und stratosphärischen Luftmassen zurückgeführt werden. Mit den in-situ Messungen von N2O, CO und CH4 (Methan) von TACTS und ESMVal 2012 werden die großräumigen Spurengasverteilungen bis zu einer potentiellen Temperatur von Theta = 410 K in der extratropischen Stratosphäre untersucht. Hierbei kann eine Verjüngung der Luftmassen in der extratropischen Stratosphäre mit Delta Theta > 30 K (relativ zur dynamischen Tropopause) über den Zeitraum der Messkampagne (28.08.2012 - 27.09.2012) nachgewiesen werden. Die Korrelation von N2O mit O3 zeigt, dass diese Verjüngung aufgrund des verstärkten Eintrages von Luftmassen aus der tropischen unteren Stratosphäre verursacht wird. Diese werden über den flachen Zweig der Brewer-Dobson-Zirkulation auf Zeitskalen von wenigen Wochen in die extratropische Stratosphäre transportiert. Anhandrnder Analyse der CO-O3-Korrelation eines Messfluges vom 30.08.2012 wird das irreversible Einmischen von Luftmassen aus der tropischen Stratosphäre in die Extratropen auf Isentropen mit Theta > 380 K identifiziert. Rückwärtstrajektorien zeigen, dass der Ursprung der eingemischten tropischen Luftmassen im Bereich der sommerlichen Antizyklone des asiatischen Monsuns liegt.
Resumo:
Solid oral dosage form disintegration in the human stomach is a highly complex process dependent on physicochemical properties of the stomach contents as well as on physical variables such as hydrodynamics and mechanical stress. Understanding the role of hydrodynamics and forces in disintegration of oral solid dosage forms can help to improve in vitro disintegration testing and the predictive power of the in vitro test. The aim of this work was to obtain a deep understanding of the influence of changing hydrodynamic conditions on solid oral dosage form performance. Therefore, the hydrodynamic conditions and forces present in the compendial PhEur/USP disintegration test device were characterized using a computational fluid dynamics (CFD) approach. Furthermore, a modified device was developed and the hydrodynamic conditions present were simulated using CFD. This modified device was applied in two case studies comprising immediate release (IR) tablets and gastroretentive drug delivery systems (GRDDS). Due to the description of movement provided in the PhEur, the movement velocity of the basket-rack assembly follows a sinusoidal profile. Therefore, hydrodynamic conditions are changing continually throughout the movement cycle. CFD simulations revealed that the dosage form is exposed to a wide range of fluid velocities and shear forces during the test. The hydrodynamic conditions in the compendial device are highly variable and cannot be controlled. A new, modified disintegration test device based on computerized numerical control (CNC) technique was developed. The modified device can be moved in all three dimensions and radial movement is also possible. Simple and complex moving profiles can be developed and the influence of the hydrodynamic conditions on oral solid dosage form performance can be evaluated. Furthermore, a modified basket was designed that allows two-sided fluid flow. CFD simulations of the hydrodynamics and forces in the modified device revealed significant differences in the fluid flow field and forces when compared to the compendial device. Due to the CNC technique moving velocity and direction are arbitrary and hydrodynamics become controllable. The modified disintegration test device was utilized to examine the influence of moving velocity on disintegration times of IR tablets. Insights into the influence of moving speed, medium viscosity and basket design on disintegration times were obtained. An exponential relationship between moving velocity of the modified basket and disintegration times was established in simulated gastric fluid. The same relationship was found between the disintegration times and the CFD predicted average shear stress on the tablet surface. Furthermore, a GRDDS was developed based on the approach of an in situ polyelectrolyte complex (PEC). Different complexes composed of different grades of chitosan and carrageenan and different ratios of those were investigated for their swelling behavior, mechanical stability, and in vitro drug release. With an optimized formulation the influence of changing hydrodynamic conditions on the swelling behavior and the drug release profile was demonstrated using the modified disintegration test device. Both, swelling behavior and drug release, were largely dependent on the hydrodynamic conditions. Concluding, it has been shown within this thesis that the application of the modified disintegration test device allows for detailed insights into the influence of hydrodynamic conditions on solid oral dosage form disintegration and dissolution. By the application of appropriate test conditions, the predictive power of in vitro disintegration testing can be improved using the modified disintegration test device. Furthermore, CFD has proven a powerful tool to examine the hydrodynamics and forces in the compendial as well as in the modified disintegration test device. rn
Resumo:
Die Mikrophysik in Wolken bestimmt deren Strahlungseigenschaften und beeinflusst somit auch den Strahlungshaushalt des Planeten Erde. Aus diesem Grund werden im Rahmen der vorliegenden Arbeit die mikrophysikalischen Charakteristika von Cirrus-Wolken sowie von arktischen Grenzschicht-Wolken behandelt. Die Untersuchung dieser Wolken wurde mithilfe verschiedener Instrumente verwirklicht, welche Partikel in einem Durchmesserbereich von 250nm bis zu 6.4mm vermessen und an Forschungsflugzeugen montiert werden. Ein Instrumentenvergleich bestätigt, dass innerhalb der Bereiche in denen sich die Messungen dieser Instrumente überlappen, die auftretenden Diskrepanzen als sehr gering einzustufen sind. Das vorrangig verwendete Instrument trägt die Bezeichnung CCP (Cloud Combination Probe) und ist eine Kombination aus einem Instrument, das Wolkenpartikel anhand von vorwärts-gerichtetem Streulicht detektiert und einem weiteren, das zweidimensionale Schattenbilder einzelner Wolkenpartikel aufzeichnet. Die Untersuchung von Cirrus-Wolken erfolgt mittels Daten der AIRTOSS-ICE (AIRcraft TOwed Sensor Shuttle - Inhomogeneous Cirrus Experiment) Kampagne, welche im Jahr 2013 über der deutschen Nord- und Ostsee stattfand. Parameter wie Partikeldurchmesser, Partikelanzahlkonzentration, Partikelform, Eiswassergehalt, Wolkenhöhe und Wolkendicke der detektierten Cirrus-Wolken werden bestimmt und im Kontext des aktuellen Wissenstandes diskutiert. Des Weiteren wird eine beprobte Cirrus-Wolke im Detail analysiert, welche den typischen Entwicklungsprozess und die vertikale Struktur dieser Wolkengattung widerspiegelt. Arktische Grenzschicht-Wolken werden anhand von Daten untersucht, die während der VERDI (VERtical Distribution of Ice in Arctic Clouds) Kampagne im Jahr 2012 über der kanadischen Beaufortsee aufgezeichnet wurden. Diese Messkampagne fand im Frühling statt, um die Entwicklung von Eis-Wolken über Mischphasen-Wolken bis hin zu Flüssigwasser-Wolken zu beobachten. Unter bestimmten atmosphärischen Bedingungen tritt innerhalb von Mischphasen-Wolken der sogenannte Wegener-Bergeron-Findeisen Prozess auf, bei dem Flüssigwassertropfen zugunsten von Eispartikeln verdampfen. Es wird bestätigt, dass dieser Prozess anhand von mikrophysikalischen Messungen, insbesondere den daraus resultierenden Größenverteilungen, nachweisbar ist. Darüber hinaus wird eine arktische Flüssigwasser-Wolke im Detail untersucht, welche im Inneren das Auftreten von monomodalen Tröpfchen-Größenverteilungen zeigt. Mit zunehmender Höhe wachsen die Tropfen an und die Maxima der Größenverteilungen verschieben sich hin zu größeren Durchmessern. Dahingegen findet im oberen Übergangsbereich dieser Flüssigwasser-Wolke, zwischen Wolke und freier Atmosphäre, ein Wechsel von monomodalen zu bimodalen Tröpfchen-Größenverteilungen statt. Diese weisen eine Mode 1 mit einem Tropfendurchmesser von 20μm und eine Mode 2 mit einem Tropfendurchmesser von 10μm auf. Das dieses Phänomen eventuell typisch für arktische Flüssigwasser-Wolken ist, zeigen an dem Datensatz durchgeführte Analysen. Mögliche Entstehungsprozesse der zweiten Mode können durch Kondensation von Wasserdampf auf eingetragenen Aerosolpartikeln, die aus einer Luftschicht oberhalb der Wolke stammen oder durch Wirbel, welche trockene Luftmassen in die Wolke induzieren und Verdampfungsprozesse von Wolkentröpfchen hervorrufen, erklärt werden. Unter Verwendung einer direkten numerischen Simulation wird gezeigt, dass die Einmischung von trockenen Luftmassen in den Übergangsbereich der Wolke am wahrscheinlichsten die Ausbildung von Mode 2 verursacht.