2 resultados para Lycopene

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Enzyme des Carotinoidstoffwechsels spalten Provitamin A-Carotinoide in wichtige Retinoide (z.B. Vitamin A, Retinsäure), die Organismen während der Entwicklung und in visuellen Systemen benötigen. Die vorliegende Arbeit präsentiert erstmalig eine Carotinoxygenase (BCO) aus Schwämmen (S. domuncula), die einzigartig im Tierreich ist und nur einen orthologen Vertreter in Pflanzen (Crocus sativus) wieder findet. Das Enzym ist eine 7,8(7’,8’)-Carotinoxygenase, die C40-Carotinoide zu einem C10-Apocarotinoid und 8’-Apocarotinal spaltet. Mittels HPLC wurden sowohl die Primärspaltprodukte von β-Carotin, Lykopin und Zeaxanthin als auch das für alle identische innere Kettenstück (Crocetin) bei Doppelspaltung nachgewiesen. Der Nachweis der BCO-Transkripte (unter anderem in-situ) belegt eine Beteiligung des Enzyms während Entwicklungsprozessen und offenbart sowohl eine streng räumlich-zeitliche als auch eine über Rückkopplungsprozesse gesteuerte Regulierung des Enzyms. Ein weiteres hier identifiziertes Gen ähnelt einer bakteriellen Apocarotinoidoxygenase (ACO), welche das 8’-Apocarotinal der BCO erneut spaltet und so Retinal generiert. Letzteres dient als Chromophor zahlreicher visueller Systeme und kann über Enzyme des Retinoidstoffwechsels entweder gespeichert, oder in das wichtige Morphogen Retinsäure umgesetzt werden. Hier werden zwei potentielle Enzyme vorgestellt, die an dieser Interkonversion Retinal/Retinol (Speicher) beteiligt sein könnten als auch eines, das evtl. Retinal zu Retinsäure umsetzt. Die hier vorgestellten Ergebnisse unterstützen die Hypothese, dass Retinsäure kein autapomorphes Morphogen der Chordaten darstellt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grünalgen bilden zur Überdauerung schlechter Umweltbedingungen Ruhestadien, die sich durch Ausbildung einer festen Zellwand, die Reduktion des Plastiden und die starke Akkumulation von Speicherfetten und Ketocarotinoiden im Zytosol auszeichnen. Obwohl Ketocarotinoide in Grünalgen seit über vierzig Jahren beforscht werden, gab es hierzu noch wenige molekularbiologische Untersuchungen. Im Vorfeld meiner Promotion wurde durch unsere Arbeitsgruppe entdeckt, dass auch der molekular gut zugängliche Modellorganismus Chlamydomonas reinhardtii im Zygotenstadium große Mengen an Ketocarotinoiden bildet. Neben dem zu erwartenden Ketocarotinoid Astaxanthin fanden wir große Mengen des bisher nur in einer Grünalge beschriebenen 4-Ketoluteins. Vorversuche ließen die Vermutung aufkommen, dass dieses Pigment bei der Untersuchung der Pigmentausstattung in Dauerstadien von vielen Grünalgen bisher übersehen wurde. rnIn der vorliegenden Arbeit wurde daher zunächst die Pigmentzusammensetzung von Dauerstadien der bereits gut untersuchten Grünalgen Muriella zofingiensis und Scenedesmus rubescens durch Vergleich mit dem Ketocarotinoidmuster aus Dauerstadien von C. reinhardtii und Fritschiella tuberosa reevaluiert und dabei erstmals das Vorkommen signifikanter Mengen an 4-Ketolutein nachgewiesen. Außerdem zeigte sich, dass die als bisheriger Modellorganismus der Ketocarotinoidbiosynthese in Grünalgen sehr gut untersuchte Alge Haematococcus pluvialis eher eine Ausnahme darstellt, da ihre Dauerstadien als einzige der hier untersuchten Algen nur minimale Mengen von 4 Ketolutein aufwiesen. Diese Beobachtungen machen es sehr wahrscheinlich, dass die Fähigkeit zur Bildung von 4-Ketolutein unter den Grünalgen wesentlich weiter verbreitet ist als bisher angenommen. Das sekundäre Carotinoid 4-Ketolutein kam in den Dauerstadien der Grünalgen neben seiner freien Form ausschließlich als Monoacylester vor, im Gegensatz zu Astaxanthin, das als mono- und diacylierte Form auftrat. rnÜber die Analyse der Pigmentausstattung hinaus konnten die entscheidenden Schritte des Synthesewegs der Ketocarotinoide in C. reinhardtii durch funktionelle Charakterisierung der beteiligten Enzyme in Bakterien aufgeklärt werden. Als Basis für die Charakterisierungen wurde ein umfangreiches Portfolio von carotinogenen E. coli-Bakterien etabliert, darunter α Carotin und Lutein produzierende Stämme, die bisher nicht zur Verfügung standen. Das wurde durch die Klonierung der Lycopinzyklase (OluLCY) aus der Grünalge Ostreococcus lucimarinus möglich, die eine Sonderolle unter den Zyklasen einnimmt, da sie die Lycopin-β-Zyklase und Lycopin-ε-Zyklase in einem Fusionsenzym vereint. Vorteile dieses Fusionsenzyms sind die Expressionskontrolle durch nur einen Promotor und die weitgehend konstante Stöchiometrie seiner Produkte α-Carotin und β-Carotin, was die OluLCY für die biotechnologische Anwendung prädestiniert.rnDie funktionelle Charakterisierung der Carotinoidbiosyntheseenzyme aus C. reinhardtii umfasste das Schlüsselenzym der Ketocarotinoidbiosynthese, die β-Carotin-Ketolase (BKT), sowie die Carotinoid-Hydroxylasen CHYB, CYP97A5 und CYP97C3. Dabei wurde für das BKT-Enzym aus C. reinhardtii nachgewiesen, dass es nicht nur die Ketolierung von β Carotin zu Canthaxanthin und von Zeaxanthin zu Astaxanthin, sondern auch die Bildung der von α-Carotin abgeleiteten Ketocarotinoide wie 4-Keto-α-Carotin und 4 Ketolutein katalysieren kann.rn