2 resultados para Legs pain
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Clinically, it is well known that neuropathic pain often induces comorbid symptoms such as anxiety. In turn, also anxiety has been associated with a heightened experience of pain. Although, the link between pain and anxiety is well recognized in humans, the neurobiological basis of this relationship remains unclear. Therefore, the aim of the current study was to investigate the influence of neuropathic pain on anxiety and vice versa in rats by assessing not only pain-related behaviour but also by discovering possible key substrates which are responsible for the interrelation of pain and anxiety.rnIn rats with a chronic constriction of the sciatic nerve (CCI model) anxiety-like behaviour was observed. Since anxiety behaviour could be completely abolished after the treatment of the pure analgesic drugs gabapentin and morphine, we concluded that anxiety was caused by the strong persistent pain. Furthermore, we found that the neuropeptides oxytocin and vasopressin were upregulated in the amygdala of CCI rats, and the intra-amygdala treatment of an oxytocin antagonist but not the vasopressin antagonist could reduce anxiety-like behaviour in these animals, while no effect on mechanical hypersensitivity was observed. These data indicate that oxytocin is implicated in the underlying neuronal processes of pain-induced anxiety and helps to elucidate the pathophysiological mechanisms of neuropathic pain. rnTo assess the influence of trait anxiety on pain sensation in rats, we determined mechanical hypersensitivity after sciatic nerve lesion (CCI) in animals selectively bred for high anxiety or low anxiety behaviour. The paw withdrawal thresholds were significantly decreased in high anxiety animals in comparison to low anxiety animals 2 and 3 weeks after surgery. In a second model state anxiety was induced by the sub-chronic injection of the anxiogenic drug pentylentetrazol in naive rats. Pain response to mechanical stimuli was increased after pharmacologically-induced anxiety. These results provided evidence for the influence of both trait and state anxiety on pain sensation. rnThe studies contribute to the elucidation of the relationship between pain and anxiety. We investigated that the neuropathic pain model displays sensory as well as emotional factors of peripheral neuropathy. Changes in expression levels of neuropeptides in the central nervous system due to neuropathic pain may contribute to the pathophysiology of neuropathic pain and its related symptoms in animals which might also be relevant for human scenarios. The results of the current study also confirm that anxiety plays an important role in the perception of pain. rnA better understanding of pain behaviour in animals might improve the preclinical profiling of analgesic drugs during development. The study highlights the potential use of the rat model as a new preclinical tool to further investigate the link between pain and anxiety by determining not only the sensory reflexes after painful stimuli but also the more complex pain-related behaviour such as anxiety.rn
Resumo:
The conventional way to calculate hard scattering processes in perturbation theory using Feynman diagrams is not efficient enough to calculate all necessary processes - for example for the Large Hadron Collider - to a sufficient precision. Two alternatives to order-by-order calculations are studied in this thesis.rnrnIn the first part we compare the numerical implementations of four different recursive methods for the efficient computation of Born gluon amplitudes: Berends-Giele recurrence relations and recursive calculations with scalar diagrams, with maximal helicity violating vertices and with shifted momenta. From the four methods considered, the Berends-Giele method performs best, if the number of external partons is eight or bigger. However, for less than eight external partons, the recursion relation with shifted momenta offers the best performance. When investigating the numerical stability and accuracy, we found that all methods give satisfactory results.rnrnIn the second part of this thesis we present an implementation of a parton shower algorithm based on the dipole formalism. The formalism treats initial- and final-state partons on the same footing. The shower algorithm can be used for hadron colliders and electron-positron colliders. Also massive partons in the final state were included in the shower algorithm. Finally, we studied numerical results for an electron-positron collider, the Tevatron and the Large Hadron Collider.