2 resultados para Knowledge Discovery Tools

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the discovery of the nuclear magnetic resonance (NMR) phenomenon, countless NMR techniques have been developed that are today indispensable tools in physics, chemistry, biology, and medicine. As one of the main obstacles in NMR is its notorious lack of sensitivity, different hyperpolarization (HP) methods have been established to increase signals up to several orders of magnitude. In this work, different aspects of magnetic resonance, using HP noble gases, are studied, hereby combining different disciplines of research. The first part examines new fundamental effects in NMR of HP gases, in theory and experiment. The spin echo phenomenon, which provides the basis of numerous modern experiments, is studied in detail in the gas phase. The changes of the echo signal in terms of amplitude, shape, and position, due to the fast translational motion, are described by an extension of the existing theory and computer simulations. With this knowledge as a prerequisite, the detection of intermolecular double-quantum coherences was accomplished for the first time in the gas phase. The second part of this thesis focuses on the development of a practical method to enhance the dissolution process of HP 129Xe, without loss of polarization or shortening of T1. Two different setups for application in NMR spectroscopy and magnetic resonance imaging (MRI) are presented. The continuous operation allows biological and multidimensional spectroscopy in solutions. Also, first in vitro MRI images with dissolved HP 129Xe as contrast agent were obtained at a clinical scanner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we develop high precision tools for the simulation of slepton pair production processes at hadron colliders and apply them to phenomenological studies at the LHC. Our approach is based on the POWHEG method for the matching of next-to-leading order results in perturbation theory to parton showers. We calculate matrix elements for slepton pair production and for the production of a slepton pair in association with a jet perturbatively at next-to-leading order in supersymmetric quantum chromodynamics. Both processes are subsequently implemented in the POWHEG BOX, a publicly available software tool that contains general parts of the POWHEG matching scheme. We investigate phenomenological consequences of our calculations in several setups that respect experimental exclusion limits for supersymmetric particles and provide precise predictions for slepton signatures at the LHC. The inclusion of QCD emissions in the partonic matrix elements allows for an accurate description of hard jets. Interfacing our codes to the multi-purpose Monte-Carlo event generator PYTHIA, we simulate parton showers and slepton decays in fully exclusive events. Advanced kinematical variables and specific search strategies are examined as means for slepton discovery in experimentally challenging setups.