10 resultados para KERATIN
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
ZusammenfassungKeratin 20 (K20) ist ein Intermediärfilament, das als Strukturelement in den Epithelien des Intestinaltrakts und den Merkelzellen der Haut exprimiert wird. Im Rahmen dieser Arbeit wurden verschiedene K20 Expressionsvektoren generiert, mit denen regulatorische Elemente des humanen Gens für K20 charakterisiert wurden. Analysiert wurde der Bereich von 4,8 kb bzw. 21,5 kb bis 12,9 kb vom Transkriptionsstart. Die Vektoren, welche die Sequenz von 21,5 kb bis 12,9 kb umfassten, konnten die Expression des EGFP Reportergens in HT-29 Zellen signifikant steigern. Zwei Enhancer-Elemente zwischen 21,5 und 18,4 kb bzw. 18,4 und 14,9 kb verstärkten die Expression der Reporterkonstrukte in vitro signifikant. Die Analyse der Vektoren in transgenen Mäusen zeigte, dass diese das Transgen gewebespezifisch exprimieren. Mit dem Bereich von 4,8 kb bis 12,9 kb ließ sich transgenspezifische mRNA Expression in intestinalen Geweben mittels RT-PCR nachweisen. Die Verwendung der Sequenz von 21,5 kb bis 21,8 kb steigerte die Expression in vivo nicht weiter.Für die gewebespezifische Expression des K20 Vektors reicht die 4,8 kb 5´upstream Sequenz aus, der Bereich bis 21,5 kb verstärkt die Expression in vitro, allerdings fehlen für die starke gewebespezifische Expression von Transgenen in vivo noch weitere Kontrollelemente.
Resumo:
Über cDNA-Banken und RT-PCR wurden erstmals 15 Intermediärfilament-Proteine (IF-Proteine) des Flussneunauges Lampetra fluviatilis (Agnatha, kieferlose Wirbeltiere) kloniert und sequenziert: drei Typ I-Keratine, vier Typ II-Keratine, fünf keratinartige IF-Proteine (drei Kγ, zwei Kα), die Typ III-Proteine Vimentin und Desmin sowie ein Typ IV-Neurofilament-Protein (NF).Die IF-Proteine wurden aus verschiedenen Organen isoliert und durch zweidimensionale Polyacrylamid-Gelelektrophorese (2D-PAGE) aufgetrennt. Biochemische sowie massenspektrometrische Analysen anhand der 2D-PAGE ermöglichten in Kombination mit den Sequenzdaten die Identifizierung von Vimentin, Desmin sowie aller sequenzierten Keratine bis auf zwei der fünf Kα/Kγ-Proteine. Die meisten Keratine ließen sich darüber hinaus in die Kategorien âEâ (von âepidermalâ) und âSâ (von âsimple epithelialâ) einteilen.Von den sequenzierten Keratinen ist das IIS-Keratin K8 wahrscheinlich ortholog zu den bekannten K8-Sequenzen höherer Vertebraten. Die Bezeichnung K18 für das einzige IS-Keratin des Neunauges in Anlehnung an das IS-Keratin K18 des Menschen basiert auf der stets beobachteten Koexpression mit K8 in einfachen Epithelien.Die Sequenz des Neunaugen-Vimentins zeigt große Übereinstimmungen mit den bekannten Desminsequenzen der Vertebraten. Die keratinartigen Proteine Kα und Kγ sind bis jetzt nur von Agnathen (Neunaugen und Schleimaale) bekannt.In molekularen Stammbäumen können K8, K18, Vimentin, Desmin und das NF_L des Neunauges gut als Außengruppe definiert werden.
Resumo:
Im Rahmen meiner Arbeit wurden erstmals die Intermediärfilament-Proteine (IF-Proteine) des Sibirischen Störs Acipenser baeri (Strahlenflosser, Knorpelganoid) kloniert und sequenziert. Aus einer cDNA-Bank konnten die Sequenzen von 13 IF-Proteine gewonnen werden. Von insgesamt zehn Keratinen codieren sieben für Typ I-Keratine und drei für Typ II. Zusätzlich konnten noch Desmin, Vimentin und ein Lamin identifiziert werden. Je einem Typ I- (K13) und einem Typ-II-Keratin (K2) fehlen wenige Aminosäuren in der Head-Domäne.Cytoskelett-Präparationen aus Epidermis, Mitteldarm, Magen und Kieme wurden mittels 2D-PAGE aufgetrennt. Durch Einsatz des CKBB-Test und Immunoblots wurden die verschiedenen Typ I und II-Keratine sowie Desmin und Vimentin identifiziert. Die gewebsspezifische Expression der Keratine ermöglichte zumeist ihre Einteilung in 'E' (epidermal) und 'S' ('simple epithelial').Die MALDI-MS-Analyse einer 2D-PAGE-Koelektrophorese von Seitenflosse und Mitteldarm zeigte, daß die 34 vorhandenen Proteinflecke auf nur 13 verschiedene IF-Proteine zurückgehen. Neun dieser Flecke konnten Sequenzen zugewiesen werden. Zusammen mit den verbleibenden vier Proteinflecken ergeben sich für den Stör nunmehr insgesamt 17 bekannte IF-Proteine. Von drei biochemisch identifizierten IS-Keratinen kommt eines nur im Mitteldarm vor und nur einem konnte eine Sequenz zugeordnet werden (K18). Dem einzigen Typ IIS-Keratin konnte keine Sequenz zugeordnet werden, wahrscheinlich handelt es sich um dabei um das K8-Orthologe. Jedem der fünf Typ IE-Proteine konnte eine Sequenz zugeordnet werden (K10 bis K14), ebenso wie dem einzigen identifizierten Typ IIE-Keratin (K2). Von den Typ III-Proteinen wurden Desmin und Vimentin ihren Proteinflecken zugeordnet. Die nicht zugeordnete Sequenz aba-k1 codiert möglicherweise für ein IIE-Keratin, während aba-k15 vermutlich die Sequenz für ein IE-Keratin enthält. Bei den Proteinflecken, denen eine Sequenz zugeordnet werden konnten, kann für Aba-K2 die Zugehörigkeit zum IIE-Typ angenommen werden, während es sich bei Aba-K10 wahrscheinlich um ein IE-Keratin handelt.Durch Datenbankvergleiche und molekulare Stammbäume konnte die Zugehörigkeit der identifizierten Lamin-Sequenz zum B3-Subtyp der Vertebraten gezeigt werden.Die Daten der Biochemie und indirekten Immunfluoreszenzmikroskopie zeigen, daß Keratine in Epithelien und Vimentin in mesenchymalen Geweben vorkommen. Es existieren starke Hinweise, daß im letzten Gewebetyp Keratine auch koexprimiert werden. Desmin kommt in großen Mengen im Magen und im Mitteldarm vor und stellt dort das prominenteste Protein.Mit den gewonnenen Sequenzdaten wurden molekulare Stammbäume und Sequenzidentitäten berechnet. Die daraus resultierenden Konsequenzen für die Verwandtschaftsverhältnisse der verschiedenen IF-Proteine sowie der Wirbeltiere werden diskutiert.
Resumo:
Smad7 ist eine inhibitorische Komponente der TGF-β- bzw. Activin-Signalweiterleitung und erfüllt eine wichtige Aufgabe bei deren Regulation. So führt eine konstitutive Überexpression von Smad7 in epithelialen Geweben zum Auftreten verschiedener Phänotypen, wie embryonaler bzw. perinataler Letalität, Hyperproliferation der Epidermis und Thymusatrophie. Auch die Entwicklung der T-Zellen im Thymus und epithelialer Anhangsgebilde wie z.B. von Haaren und Zähnen wird dadurch beeinträchtigt. In dieser Arbeit sollte nun in der adulten Maus der Effekt einer Überexpression von Smad7 in epithelialen Geweben untersucht werden. Zu diesem Zweck wurde ein, auf dem Cre/loxP-Prinzip beruhendes Transgensystem verwendet (K5-Smad7-tg und K14-creERT2), welches eine konditionell-induzierte Überexpression von Smad7 in epithelialen Zellen der adulten Maus erlaubte. Die so gezüchteten doppeltransgenen Tiere wiesen keine signifikanten Veränderungen gegenüber ihren wildtyp bzw. einfachtransgenen Geschwistertieren auf. Die Überexpression von Smad7 in epithelialen Geweben der adulten Maus zu einem Auftreten verschiedenster veränderter Phänotypen der Haut und deren Anhänge, sowie der Schneidezähne. Bei diesen Tieren konnte auch ein signifikanter Körpergewichtsverlust und eine Erhöhung der Mortalitätsrate beobachtet werden, welche sich im Verlauf nach erfolgter Rekombination einstellte. Weitere Analysen zeigten signifikante Veränderungen in der Haut und im Thymus. So konnte in der Haut eine Erhöhung der Proliferationsrate epidermaler Zellen, eine reduzierte Expression von Smad3 und im Thymus Veränderungen in der Gesamtzahl der lebenden T-Zellen und deren Differenzierung beobachtete werden. Mit dieser Arbeit konnte gezeigt werden, daß die Hemmung der Signalweiterleitung der TGF-β-Superfamilie, speziell von TGF-β und Activin, zu verschiedenen morphogenetischen Defekten der Haut und deren Anhänge, der Zähne und der T-Zellentwicklung im Thymus führt.
Resumo:
Das zytoplasmatische Zytoskelett besteht aus drei Filamentsystemen, die aus Aktin, Tubulin und Intermediärfilamentproteinen aufgebaut sind und dreidimensionale Netzwerke ausbilden. Das Intermediärfilamentsystem, dem vor allem mechanische Stabilisierungsfunktionen zugesprochen werden, unterscheidet sich von den anderen durch seine Fähigkeit, spontan aus seinen Polypeptiduntereinheiten ohne weitere Kofaktoren zu polymerisieren und durch seinen unpolaren Aufbau. Es ist bis heute unbekannt, wie Intermediärfilamentnetzwerke in vivo moduliert werden und wie ihre Anordnung in den Kontext des Gesamtzytoskeletts koordiniert wird. Am Beispiel der epithelialen Intermediärfilamentproteine, den Keratinen, sollte daher untersucht werden, wie und wo neue Intermediärfilamente entstehen, welche Bedeutung den anderen Filamentsystemen bei dem Netzwerkaufbau und –Turn-Over zukommen und wie die Netzwerkbildung gesteuert wird. Zur Beantwortung dieser Fragestellungen wurden Zellklone hergestellt, die fluoreszierende Keratine synthetisieren. In der Zelllinie SK8/18-2, deren gesamtes Netzwerk aus derartigen Chimären aufgebaut ist, konnten anhand von mikroskopischen Zeitrafferaufnahmen der Fluoreszenzmuster Keratinfilamentvorläufer (KFP) identifiziert und deren Dynamik direkt in lebenden Zellen verfolgt werden. Es konnte gezeigt werden, dass die KFP in einem Plasmamembran-nahen Bereich entstehen, in dem sie zuerst als punktförmige Partikel detektiert werden. Nach einer initialen, sphäroidalen Wachstumsphase elongieren die Partikel zu kleinen Filamentstückchen. Diese können miteinander fusionieren und werden über ihre Enden in das periphere Netzwerk integriert. Der Wachstumsprozess ist gekoppelt an eine kontinuierliche, langsame Bewegung in Richtung auf das Zellzentrum. Diese Motilität sistiert vollständig nach pharmakologisch induziertem Abbau der Aktinfilamente. In Zeitraffer-aufnahmen kann jedoch in derartig behandelten Zellen ein wesentlich schnellerer Transport, der in verschiedene Richtungen verläuft und durch lange Ruhephasen unterbrochen wird, beobachtet werden. Dieser Modus, der gelegentlich auch in unbehandelten Zellen gefunden wurde, ist abhängig von intakten Mikrotubuli. Erst durch Zerstörung der Aktinfilamente und der Mikrotubuli erlischt die Motilität der KFPs vollständig. Bei der Suche nach Regulatoren der Keratinnetzwerkbildung wurde die p38 MAPK als zentraler Faktor identifiziert. Erstmals konnte eine direkte räumliche und zeitliche Korrelation zwischen einer spezifischen Enzymaktivität durch Nachweis der phosphorylierten p38 MAPK, der daraus folgenden Phosphorylierung eines Keratins, hier Serin 73 des Keratin 8, und der daraus resultierenden Veränderung des Netzwerkaufbaus, d. h. der Ausbildung von Keratingranula, nachgewiesen werden. Diese koordinierten Veränderungen wurden in unterschiedlichen Stresssituationen in verschiedenen Zellsystemen und in Zellen mit mutierten Keratinen beobachtet. Genetische (shRNA) und pharmakologische Manipulationen der p38 MAPK-Aktivität deuten auf einen engen kausalen Zusammenhang hin.
Resumo:
UV-B-Strahlung, die durch die fortschreitende Zerstörung der Ozonschicht zunimmt, ist hauptsächlich für das Entstehen von Basaliomen und Plattenepithelkarzinomen verantwort-lich, an denen jedes Jahr etwa 2-3 Millionen Menschen weltweit erkranken. UV-B indu-zierte Hautkarzinogenese ist ein komplexer Prozess, bei dem vor allem die mutagenen und immunsuppressiven Wirkungen der UV-B-Strahlung von Bedeutung sind. Die Rolle von GM-CSF in der Hautkarzinogenese ist dabei widersprüchlich. Aus diesem Grund wurde die Funktion von GM-CSF in vivo in der UV-B induzierten Hautkarzinogenese mittels zwei bereits etablierter Mauslinien untersucht: Erstens transgene Mäuse, die einen GM-CSF Antagonisten unter der Kontrolle des Keratin-10-Promotors in den suprabasalen Schichten der Epidermis exprimieren und zweitens solche, die unter dem Keratin-5-Promotor murines GM-CSF in der Basalschicht der Epidermis überexprimieren. Eine Gruppe von Tieren wurde chronisch, die andere akut bestrahlt. Die konstitutionelle Verfassung der Tiere mit erhöhter GM-CSF-Aktivität in der Haut war nach chronischer UV-B-Bestrahlung insgesamt sehr schlecht. Sie wiesen deshalb eine stark erhöhte Mortali-tät auf. Dies ist sowohl auf die hohe Inzidenz als auch dem frühen Auftreten der benignen und malignen Läsionen zurückzuführen. Eine verminderte GM-CSF Aktivität verzögerte dagegen die Karzinomentwicklung und erhöhte die Überlebensrate leicht. GM-CSF wirkt auf verschiedenen Ebenen tumorpromovierend: Erstens erhöht eine gesteigerte Mastzell-anzahl in der Haut der GM-CSF überexprimierenden Tiere per se die Suszeptibilität für Hautkarzinogenese. Zweitens stimuliert GM-CSF die Keratinozytenproliferation. Dadurch kommt es nach UV-B-Bestrahlung zu einer prolongierten epidermalen Hyperproliferation, die zur endogenen Tumorpromotion beiträgt, indem sie die Bildung von Neoplasien unter-stützt. Der Antagonist verzögert dagegen den Proliferationsbeginn, die Keratinozyten blei-ben demzufolge länger in der G1-Phase und der durch UV-B verursachte DNA-Schaden kann effizienter repariert werden. Drittens kann GM-CSF die LCs nicht als APCs aktivie-ren und eine Antitumorimmunität induzieren, da UV-B-Strahlung zur Apoptose von LCs bzw. zu deren Migration in Richtung Lymphknoten führt. Zusätzlich entwickeln GM-CSF überexprimierende Tiere in ihrer Haut nach UV-B-Bestrahlung ein Millieu von antago-nistisch wirkenden Zytokinen, wie TNF-a, TGF-b1 und IL-12p40 und GM-CSF, die proinflammatorische Prozesse und somit die Karzinomentwicklung begünstigen. Der Anta-gonist hemmt nach UV-B-Bestrahlung die Ausschüttung sowohl von immunsuppressiven Zytokinen, wie etwa TNF-a, als auch solchen, die die Th2-Entwicklung unterstützen, wie etwa IL-10 und IL-4. Dies wirkt sich negativ auf die Karzinomentwicklung aus.
Resumo:
Das Zytoskelett eukaryotischer Zellen besteht aus drei verschiedenen Protein-Netzwerken: den Aktinfilamenten, Mikrotubuli und Intermediärfilamenten. Intermediärfilamente wurden ursprünglich als statische Strukturen angesehen, die die mechanische Stabilisierung der Zellen übernehmen. In den letzten Jahren hat sich dieses Bild jedoch geändert: Intermediärfilament-Netzwerke sind hochdynamisch und unterliegen kontinuierlichen Veränderungen, welche durch Phosphorylierungen reguliert werden. Sie interagieren mit anderen Zytoskelett-Proteinen und greifen in die Regulation von Schlüsselsignalwegen, die Zellwachstum und Zellteilung sowie Apoptose und Stressantwort bestimmen, ein. Die Mechanismen der Filamentplastizität konnten bisher jedoch nicht vollständig aufgeklärt werden. So ist beispielsweise unklar, wo Auf- und Abbau der Filamente stattfindet und welche Faktoren an der Netzwerkmodulation beteiligt sind. Ziel meiner Arbeit war es, einen Beitrag zur Aufklärung dieser Mechanismen am Beispiel der epithelialen Keratin-Intermediärfilamente zu leisten. Mit Hilfe von mikroskopischen Zeitrafferaufnahmen von fluoreszenzmarkierten Zellklonen wurden Nukleationszentren in der Zellperipherie identifiziert, in denen Keratinfilamentvorläufer gebildet werden. Es handelt sich dabei um fokale Adhäsionskomplexe, die als Anheftungsstellen zwischen der extrazellulären Matrix und dem intrazellulären Aktinfilament-System dienen. Es konnte gezeigt werden, dass diese Filamentvorläufer-Entstehung für alle untersuchten Keratinisoformen gültig ist und in epitelialen als auch nicht-epithelialen Zelltypen abläuft. Knock-Down der Adhäsionskomponente Talin verhinderte die Keratinfilamentbildung. Modulation der fokalen Adhäsionskinase, die den Auf- und Abbau der Adhäsionskomplexe koordiniert, beeinflusste ebenso die Bildung der Keratinfilamentnetzwerke. Es konnte weiterhin beobachtet werden, dass die N-terminalen Isoformen IE und IF des Zytolinkers Plectin in fokalen Adhäsionen lokalisieren und damit möglicherweise an der Vernetzung von Keratinfilamentvorläufern, Zelladhäsionen und Aktinfilamenten beteiligt sind. Letztlich stellte sich heraus, dass die Bildung der Keratinfilamentvorläufer unabhängig von Proteintranslation ist. In den mikroskopischen Zeitrafferaufnahmen wurde im Anschluss an die Keratinfilamentbildung ein kontinuierlicher zentripetaler Transport der wachsenden Vorläuferpartikel beobachtet. An Hand von pharmakologischen Experimenten konnte gezeigt werden, dass dieser Transport Aktinfilament-abhängig ist. Zeitgleich kommt es zu Partikelfusion und Integration in das periphere Netzwerk, das sich weiterhin in Richtung auf das Zellzentrum bewegt. Mit Hilfe von Photoaktivierungsversuchen und Zellfusionsexperimenten konnte die Hypothese bestätigt werden, dass der Abbau der einwandernden Keratinfilamente in lösliche, rasch diffusible Zwischenstufen den kontinuierlichen peripheren Neuaufbau ermöglicht. Aus den Beobachtungen und bereits bekannten Ergebnissen wurde ein Modell des Keratin-Zyklus entwickelt, das die folgenden Stadien umfasst: Nukleation von Keratinfilamentvorläufern an fokalen Adhäsionen in der Zellperipherie, Elongation und Fusion der Keratinfilamentvorläufer bei zeitgleichem Aktinfilament-abhängigem zentripetalen Transport, Integration der Keratinfilamentvorläufer in das periphere Netzwerk, Bündelung der Filamente, Filamentabbau in lösliche Untereinheiten und Neubeginn des Zyklus in der Zellperipherie. Eine Störung dieses Zyklus liegt bei mutierten Keratinen vor, welche die Ursache von Blasen-bildenden Hauterkrankungen sind. In der vorliegenden Arbeit wurde am Beispiel von Keratin 6a-Mutanten, welche die Hauterkrankung Pachyonychia congenita verursachen, gezeigt, dass bei diesen Keratinen die Nukleation zwar im Bereich der Adhäsionskomplexe regelrecht abläuft, die anschließende Elongation und Netzwerkbildung aber gestört ist, so dass statt dessen kurzlebige, hyperphosphorylierte Granula entstehen. Der resultierende frustrane Keratin-Zyklus in der Zellperipherie ist stark beschleunigt und kann durch p38-Inhibierung gestoppt werden. Bei Proteasomeninhibierung wird der Zyklus in Richtung der Granulabildung verschoben. In dieser Arbeit wird erstmals das Keratin-Tretmühlen-Modell vorgestellt, das den regulierbaren Auf- und Abbau-Zyklus des Keratinnetzwerks beschreibt. Damit liegen testbare Hypothesen für die Aufklärung der Keratinfilament-Plastizität in physiologischen und pathologischen Situationen vor, die nach unseren ersten Ergebnissen auch von Relevanz für andere Intermediärfilamenttypen sind.
Resumo:
Elf3 gehört zur Familie der Ets-Transkriptionsfaktoren und wird unter nicht-entzündlichen Bedingungen ausschließlich in epithelialen Zellen exprimiert, vor allem in den Enterozyten des gastrointestinalen Traktes. Um die Rolle des Transkriptionsfaktors Elf3 in Hinblick auf potentielle Zielgene und Einflüsse auf die Darm-Morphologie zu untersuchen, wurde ein Vektorsystem für die konditionelle Expression eines dominant-negativen Elf3 (dnElf3) in Darmepithelzellen generiert. Regulatorische Elemente des humanen Keratin 20 Gens in Kombination mit dem Cre/loxP-System ermöglichten eine induzierbare, darmepithel-spezifische Expression in transgenen Mäusen. Die Expression von dnElf3 führt zu einem signifikanten Gewichtsverlust und deutlichen morphologischen Veränderungen des Darmepithels. Im Dünndarm konnte ein erhöhte Anzahl von Becherzellen und eine verstärkte Mukusproduktion nachgewiesen werden. Sowohl die Keratin 8 Expression, als auch die Expression des Zellmembranproteins Claudin 7 waren signifikant herab reguliert. Im Rahmen dieser Arbeit konnte erstmals eine Regulation der Claudin 7 Expression durch Elf3 im Darm gezeigt werden.
Resumo:
The tumour suppressor gene cyld is mutated in familial cylindromatosis, an autosomal-dominant condition that predisposes to multiple skin tumours. The deubiquitinase CYLD acts as a negative regulator of NF-κB signaling. To analyse the function of CYLD in vivo we used the CYLDex7/8 mice, which are characterized by loss of the full-length transcript and overexpression of a short splice variant of CYLD (sCYLD). In CYLDex7/8 mice the overexpression of sCYLD results in splenomegaly and lymphadenopathy. Additionally, the B cell population in spleen and lymph nodes is increased at the expense of T cells. Analysis of CYLDex7/8 T cells showed a significant reduction of CD4 single positive (SP) and CD8 SP T cells in the thymus and in the periphery. By investigating the impact of sCYLD in TCR signaling in thymocytes, we could demonstrate that sCYLD partially inhibited the activation of Zap70 and thereby negatively regulated TCR signaling. In vitro as well as in vivo we could show that CD4+ T cells displayed a hyperactive phenotype, proliferated to a better extent than WT cells and expressed high amounts of inflammatory cytokines such as IL-6 and IL-17A. Western Blots of steady state thymocytes and peripheral CD4+ T cells were performed, showing that the noncanonical pathway was highly upregulated visualized by the expression levels of RelB and p100 leading to a hyperactive phenotype of CD4+ T cells. In order to investigate the contribution of sCYLD in positive and negative selection in the thymus in vivo, the HY-TCR transgene (HYtg) was crossed to CYLDex7/8 mice. The analysis of CYLDex7/8 HYtg males revealed an increase in CD4+CD8+ DP as well as in CD8+ SP thymocytes, suggesting a less pronounced negative selection in CYLD mutant mice compared to HYtg control mice. Interestingly, the impaired negative selection in the thymus was accompanied by a strong colitis phenotype at early ages (4 weeks). Since medullary TECs (mTECs) play an important role in the late stage of T cell development by negatively selecting autoreactive thymocytes, the levels of mTECs in the medullary compartment was investigated. Of note, low numbers of mTECs were observed, combined with decreased expression levels of the mTEC markers UEA-1, keratin-5, claudin-3 and claudin-4. The reduction of mTECs in the medullary compartment could explain the inflammatory phenotype of CD4+ T cells in CYLDex7/8 mice leading to the severe intestinal pathology observed in these mice. Taken together, these results show an important role of sCYLD in T cell development and function as well as in NF-кB signaling of T cells.
Resumo:
Die Schleimkeratine TKα und TKγ aus dem Schleimaal Eptatretus stoutii besitzten für Keratine außergewöhnliche Eigenschaften. In speziellen Drüsen reifen die Schleimkeratine zu 3 µm dicken und bis zu 60 cm langen kabelartigen Filamenten heran und werden anschließend zur Feindabwehr ins umgebende Wasser extrazellulär sezerniert, wodurch die viskoelastischen Eigenschaften des Schleims modifiziert werden. Mittlerweile wurden die Schleimkeratine auch in höheren Wirbeltiergruppen (Knochenfische und Amphibien) entdeckt. Zu Beginn meiner Promotion war jedoch bis auf EST-Verteilungsprofile noch nichts über die Expression und Funktion der Schleimkeratine in diesen Organismen bekannt. rnIm Rahmen meiner Arbeit wurden die Schleimkeratine TKα und TKγ erstmalig im Zebrabärbling Danio rerio identifiziert und näher charakterisiert. Mittels rekombinanter Expression wurden TKα und TKγ in ausreichenden Mengen hergestellt und auf ihre Bindungseigenschaften hin untersucht. Hierbei konnte ich zeigen, dass TKα und TKγ einerseits miteinander Heteromere formen und andererseits, dass das TKα in der Lage ist, auch homopolymere Strukturen auszubilden. Letztere Eigenschaft wurde bisher noch bei keinem bekannten cytoplasmatischen Keratin beschrieben. Ergänzend zu diesen Untersuchungen wurde eine Expressionsanalyse durchgeführt. Hierbei konnte gezeigt werden, dass die Schleimkeratine im Zebrabärbling nicht extrazellulär sezerniert werden und zum anderen keine höheren, kabelartigen Strukturen ausformen. Vielmehr werden die Schleimkeratine bei adulten Tieren in den basalen Zellschichten der Epidermis exprimiert, welche keinen mechanischen Schutz in Form von Schuppen aufweisen (Stirnhautepidermis, Epidermis in Geweben zwischen den Flossenstrahlen). Innerhalb dieser Zellen formen die Schleimkeratine ein filamentöses Netzwerk aus, dass sich an der basalen Zellseite konzentriert. Eine mögliche Funktion von TKα und TKγ könnte demnach in der Erhöhung der mechanischen Integrität von stark beanspruchten Geweben liegen, die keinen Schutz in Form von Schuppen aufweisen. So werden TKα und TKγ in larvalen Entwicklungsstadien in der Epidermis, sowie im mechanisch stark beanspruchten Notochord koexprimiert. rnDa das Notochord im Zebrabärbling auch in entwicklungsbiologischen Vorgängen eine entscheidende Rolle spielt und weiterhin in aktuellen Untersuchungen am glatten Krallen-frosch Xenopus laevis Funktionen der Schleimkeratine TKα und TKγ innerhalb von Degenerationsprozessen während der Metamorphose nachgewiesen werden konnten, sind auch im Zebrabärbling Danio rerio Funktionen der Schleimkeratine TKα und TKγ im Rahmen von Entwicklungsprozessen denkbar.rn