4 resultados para Kähler-Einstein Metrics
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Deutsche Version: Zunächst wird eine verallgemeinerte Renormierungsgruppengleichung für die effektiveMittelwertwirkung der EuklidischenQuanten-Einstein-Gravitation konstruiert und dann auf zwei unterschiedliche Trunkierungen, dieEinstein-Hilbert-Trunkierung und die$R^2$-Trunkierung, angewendet. Aus den resultierendenDifferentialgleichungen wird jeweils die Fixpunktstrukturbestimmt. Die Einstein-Hilbert-Trunkierung liefert nebeneinem Gaußschen auch einen nicht-Gaußschen Fixpunkt. Diesernicht-Gaußsche Fixpunkt und auch der Fluß in seinemEinzugsbereich werden mit hoher Genauigkeit durch die$R^2$-Trunkierung reproduziert. Weiterhin erweist sichdie Cutoffschema-Abhängigkeit der analysierten universellenGrößen als äußerst schwach. Diese Ergebnisse deuten daraufhin, daß dieser Fixpunkt wahrscheinlich auch in der exaktenTheorie existiert und die vierdimensionaleQuanten-Einstein-Gravitation somit nichtperturbativ renormierbar sein könnte. Anschließend wird gezeigt, daß der ultraviolette Bereich der$R^2$-Trunkierung und somit auch die Analyse des zugehörigenFixpunkts nicht von den Stabilitätsproblemen betroffen sind,die normalerweise durch den konformen Faktor der Metrikverursacht werden. Dadurch motiviert, wird daraufhin einskalares Spielzeugmodell, das den konformen Sektor einer``$-R+R^2$''-Theorie simuliert, hinsichtlich seinerStabilitätseigenschaften im infraroten (IR) Bereichstudiert. Dabei stellt sich heraus, daß sich die Theorieunter Ausbildung einer nichttrivialen Vakuumstruktur auf dynamische Weise stabilisiert. In der Gravitation könnteneventuell nichtlokale Invarianten des Typs $intd^dx,sqrt{g}R (D^2)^{-1} R$ dafür sorgen, daß der konformeSektor auf ähnliche Weise IR-stabil wird.
Resumo:
Während das Standardmodell der Elementarteilchenphysik eine konsistente, renormierbare Quantenfeldtheorie dreier der vier bekannten Wechselwirkungen darstellt, bleibt die Quantisierung der Gravitation ein bislang ungelöstes Problem. In den letzten Jahren haben sich jedoch Hinweise ergeben, nach denen metrische Gravitation asymptotisch sicher ist. Das bedeutet, daß sich auch für diese Wechselwirkung eine Quantenfeldtheorie konstruieren läßt. Diese ist dann in einem verallgemeinerten Sinne renormierbar, der nicht mehr explizit Bezug auf die Störungstheorie nimmt. Zudem sagt dieser Zugang, der auf der Wilsonschen Renormierungsgruppe beruht, die korrekte mikroskopische Wirkung der Theorie voraus. Klassisch ist metrische Gravitation auf dem Niveau der Vakuumfeldgleichungen äquivalent zur Einstein-Cartan-Theorie, die das Vielbein und den Spinzusammenhang als fundamentale Variablen verwendet. Diese Theorie besitzt allerdings mehr Freiheitsgrade, eine größere Eichgruppe, und die zugrundeliegende Wirkung ist von erster Ordnung. Alle diese Eigenschaften erschweren eine zur metrischen Gravitation analoge Behandlung.rnrnIm Rahmen dieser Arbeit wird eine dreidimensionale Trunkierung von der Art einer verallgemeinerten Hilbert-Palatini-Wirkung untersucht, die neben dem Laufen der Newton-Konstante und der kosmologischen Konstante auch die Renormierung des Immirzi-Parameters erfaßt. Trotz der angedeuteten Schwierigkeiten war es möglich, das Spektrum des freien Hilbert-Palatini-Propagators analytisch zu berechnen. Auf dessen Grundlage wird eine Flußgleichung vom Propertime-Typ konstruiert. Zudem werden geeignete Eichbedingungen gewählt und detailliert analysiert. Dabei macht die Struktur der Eichgruppe eine Kovariantisierung der Eichtransformationen erforderlich. Der resultierende Fluß wird für verschiedene Regularisierungsschemata und Eichparameter untersucht. Dies liefert auch im Einstein-Cartan-Zugang berzeugende Hinweise auf asymptotische Sicherheit und damit auf die mögliche Existenz einer mathematisch konsistenten und prädiktiven fundamentalen Quantentheorie der Gravitation. Insbesondere findet man ein Paar nicht-Gaußscher Fixpunkte, das Anti-Screening aufweist. An diesen sind die Newton-Konstante und die kosmologische Konstante jeweils relevante Kopplungen, wohingegen der Immirzi-Parameter an einem Fixpunkt irrelevant und an dem anderen relevant ist. Zudem ist die Beta-Funktion des Immirzi-Parameters von bemerkenswert einfacher Form. Die Resultate sind robust gegenüber Variationen des Regularisierungsschemas. Allerdings sollten zukünftige Untersuchungen die bestehenden Eichabhängigkeiten reduzieren.
Resumo:
The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory.rnAs its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained.rnThe constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point.rnFinally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement of existing computations, taking the independent running of the Euler topological term into account. Known perturbative results are reproduced in this case from the renormalization group equation, identifying however a unique non-Gaussian fixed point.rn
Resumo:
Among the different approaches for a construction of a fundamental quantum theory of gravity the Asymptotic Safety scenario conjectures that quantum gravity can be defined within the framework of conventional quantum field theory, but only non-perturbatively. In this case its high energy behavior is controlled by a non-Gaussian fixed point of the renormalization group flow, such that its infinite cutoff limit can be taken in a well defined way. A theory of this kind is referred to as non-perturbatively renormalizable. In the last decade a considerable amount of evidence has been collected that in four dimensional metric gravity such a fixed point, suitable for the Asymptotic Safety construction, indeed exists. This thesis extends the Asymptotic Safety program of quantum gravity by three independent studies that differ in the fundamental field variables the investigated quantum theory is based on, but all exhibit a gauge group of equivalent semi-direct product structure. It allows for the first time for a direct comparison of three asymptotically safe theories of gravity constructed from different field variables. The first study investigates metric gravity coupled to SU(N) Yang-Mills theory. In particular the gravitational effects to the running of the gauge coupling are analyzed and its implications for QED and the Standard Model are discussed. The second analysis amounts to the first investigation on an asymptotically safe theory of gravity in a pure tetrad formulation. Its renormalization group flow is compared to the corresponding approximation of the metric theory and the influence of its enlarged gauge group on the UV behavior of the theory is analyzed. The third study explores Asymptotic Safety of gravity in the Einstein-Cartan setting. Here, besides the tetrad, the spin connection is considered a second fundamental field. The larger number of independent field components and the enlarged gauge group render any RG analysis of this system much more difficult than the analog metric analysis. In order to reduce the complexity of this task a novel functional renormalization group equation is proposed, that allows for an evaluation of the flow in a purely algebraic manner. As a first example of its suitability it is applied to a three dimensional truncation of the form of the Holst action, with the Newton constant, the cosmological constant and the Immirzi parameter as its running couplings. A detailed comparison of the resulting renormalization group flow to a previous study of the same system demonstrates the reliability of the new equation and suggests its use for future studies of extended truncations in this framework.