3 resultados para Ion-molecule
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Im Rahmen der Arbeit wurde ein neuartiges Aerosol-Ionenfallen-Massenspektrometer (AIMS) aufgebaut und umfassend charakterisiert. Mit dem AIMS kann die chemische Zusammensetzung der verdampfbaren Komponente (bei etwa 600 °C) von Aerosolpartikeln quantitativ und on-line bestimmt werden. Die Durchmesser der Teilchen, die analysiert werden können, liegen zwischen etwa 30 und 500 nm. Der experimentelle Aufbau greift auf ein bereits gut charakterisiertes Einlasssystem des Aerodyne Aerosol-Massenspektrometers (AMS) zurück, das einen Partikeleinlass, bestehend aus einer kritischen Düse und einer aerodynamischen Linse, einen Verdampfer für die Aerosolteilchen und eine Elektronenstoß-Ionenquelle enthält. Das kommerzielle AMS verwendet entweder ein lineares Quadrupol-Massenfilter (Q-AMS) oder ein Flugzeit-Massenspektrometer (ToF-AMS). Im AIMS hingegen wird eine dreidimensionale Ionenfalle als Massenanalysator eingesetzt. Dadurch eröffnen sich unter anderem Möglichkeiten zur Durchführung von MSn-Studien und Ionen/Molekül-Reaktionsstudien. Das Massenspektrometer und wichtige Teile der Steuerungselektronik wurden am Max-Planck-Institut für Chemie in Mainz entworfen und hergestellt. Das AIMS wird von einem PC und einer Software, die in der Programmiersprache LabVIEW verfasst ist, gesteuert. Aufgrund seiner Kompaktheit ist das Instrument auch für den Feldeinsatz geeignet. Mit der Software Simion 7.0 wurden umfangreiche Simulationsstudien durchgeführt. Diese Studien beinhalten Simulationen zur Ermittlung der optimalen Spannungseinstellungen für den Ionentransfer von der Ionenquelle in die Ionenfalle und eine Abschätzung der Sammeleffizienz der Ionenfalle, die gut mit einem gemessenen Wert übereinstimmt. Charakterisierungsstudien zeigen einige instrumentelle Merkmale des AIMS auf. Es wurde beispielsweise ein Massenauflösungsvermögen von 807 für m/z 121 gefunden, wenn eine Analyserate von 1780 amu/s verwendet wird. Wird die Analyserate verringert, dann lässt sich das Massenauflösungsvermögen noch erheblich steigern. Bei m/z 43 kann dann ein Wert von > 1500 erzielt werden, wodurch sich Ionenfragmente wie C2H3O+ (m/z 43.0184) und C3H7+ (m/z 43.0548) voneinander trennen lassen. Der Massenbereich des AIMS lässt sich durch resonante Anregung erweitern; dies wurde bis zu einer Masse von 1000 amu getestet. Kalibrationsmessungen mit laborgenerierten Partikeln zeigen eine hervorragende Linearität zwischen gemessenen Signalstärken und erzeugten Aerosol-Massenkonzentrationen. Diese Studien belegen im Zusammenhang mit den gefundenen Nachweisgrenzen von Nitrat (0.16 μg/m³) und Sulfat (0.65 μg/m³) aus Aerosolpartikeln, dass das AIMS für quantitative Messungen von atmosphärischem Aerosol geeignet ist. Ein Vergleich zwischen dem AIMS und dem Q-AMS für Nitrat in städtischem Aerosol zeigt eine gute Übereinstimmung der gefundenen Messwerte. Für laborgenerierte Polystyren-Latexpartikel wurde eine MS/MS-Studie unter der Anwendung von collision induced dissociation (CID) durchgeführt. Das Verhältnis von Fragmentionen zu Analytionen wurde zu einem Wert von > 60% bestimmt. In der Zukunft können ähnliche MS/MS-Studien auch für atmosphärische Aerosolpartikel angewandt werden, wodurch sich neue Perspektiven für die Speziation von Aerosolbestandteilen eröffnen. Dann sollen vor allem Kondensationsprozesse, das heißt die Bildung von sekundärem Aerosol, detailliert untersucht werden.
Resumo:
Diese Arbeit beschreibt die Entwicklung des flugzeuggetragenen Atmosphärischen Ionisations-Massenspektrometers AIMS-H2O zur Messung von Wasserdampf in der oberen Troposphäre und unteren Stratosphäre (UTLS) und erste Flugzeugmessungen mit dem Instrument. Wasserdampf beeinflusst das Klima in der UTLS aufgrund seiner Strahlungseigenschaften und agiert als wichtiger Parameter bei der Bildung von Zirruswolken und Kondensstreifen. Deshalb sind genaue Wasserdampfmessungen für das Verständnis vieler atmosphärischer Prozesse unerlässlich. Instrumentenvergleiche wie sie im SPARC Report No. 2 und dem Bericht der AUQAVIT Kampagne zusammengefasst sind, haben gezeigt, dass große Abweichungen zwischen einzelnen Methoden und Instrumenten bestehen. Diese Unsicherheiten limitieren das Verständnis des Einflusses von Wasserdampf auf die Dynamik und die Strahlungseigenschaften in der UTLS. Die in dieser Arbeit vorgestellte Entwicklung einer neuen Messmethode für Wasserdampf mit dem Massenspektrometer AIMS-H2O ist deshalb auf die genaue Messung niedriger Wasserdampfkonzentrationen in der UTLS fokussiert. Mit AIMS H2O wird Umgebungsluft in einer neu entwickelten Gasentladungsquelle ionisiert. Durch eine Reihe von Ionen-Molekül-Reaktionen entstehen H3O+(H2O) und H3O+(H2O)2 Ionen. Diese Ionen werden genutzt, um die Wasserdampfkonzentration in der Atmosphäre zu bestimmen. Um die erforderliche hohe Genauigkeit zu erzielen, wird AIMS H2O im Flug kalibriert. In dem zu diesem Zweck aufgebauten Kalibrationsmodul wird die katalytische Reaktion von Wasserstoff und Sauerstoff auf einer Platinoberfläche genutzt, um definierte Wasserdampfkonzentrationen für die Kalibration im Flug zu erzeugen. Bei ersten Messungen auf der Falcon während der Kampagne CONCERT 2011 konnte dabei eine Genauigkeit von 8 bis 15% für die Messung der Wasserdampfkonzentration in einem Messbereich von 0,5 bis 250 ppmv erreicht werden. Die Messfrequenz betrug 4 Hz, was einer räumlichen Auflösung von etwa 50 m entspricht. Der Vergleich der Messung des Massenspektrometers mit dem Laserhygrometer Waran zeigt eine sehr gute Übereinstimmung im Rahmen der Unsicherheiten. Anhand zweier Fallstudien werden die Messungen von AIMS H2O während CONCERT 2011 detailliert analysiert. In der ersten Studie werden zwei Flüge in eine stratosphärische Intrusion über Nordeuropa untersucht. In dieser Situation wurde stratosphärische Luft bis hinunter auf 6 km Höhe transportiert und war dadurch mit der Falcon erreichbar. Es konnte gezeigt werden, dass AIMS-H2O sehr gut für die genaue Messung niedriger Wasserdampfkonzentrationen, in diesem Fall bis etwa 3,5 ppmv, geeignet ist. Der Vergleich der Messung mit Analysen des ECMWF Integrated Forecast Systems zeigt eine gute Übereinstimmung der gemessenen Wasserdampfstrukturen mit der dynamischen Tropopause. Unterschiede tauchen dagegen beim Vergleich der Wasserdampfkonzentrationen in der unteren Stratosphäre auf. Hier prognostiziert das Modell deutlich höhere Feuchten. Die zweite Fallstudie beschäftigt sich mit der Verteilung der relativen Feuchte in jungen Kondensstreifen im Vergleich zu ihrer direkten Umgebung. Dabei wurde für drei Messsequenzen im Abgasstrahl von Flugzeugen beobachtet, dass die relative Feuchte innerhalb des Kondensstreifens im Vergleich zur Umgebung sowohl bei unter- als auch übersättigten Umgebungsbedingungen in Richtung Sättigung verschoben ist. Die hohe Anzahl an Eispartikeln und die damit verbundene große Eisoberfläche in jungen Kondensstreifen führt also zu einer schnellen Relaxation von Gasphase und Eis in Richtung Gleichgewicht. In der Zukunft soll AIMS-H2O auch auf HALO für die genaue Messung von Wasserdampf bei ML-CIRRUS und weiteren Kampagnen eingesetzt werden.
Resumo:
Mixed tethered bilayer lipid membranes (tBLMs) are described based on the self-assembly of a monolayer on template stripped gold, of an archea analogue thiolipid, 2,3-di-o-phytanyl-sn-glycerol-1-tetraethylene glycol-D,L--lipoic acid ester lipid (DPTL), and a newly designed dilution molecule, tetraethylene glycol-D,L--lipoic acid ester (TEGL). The usage of spacer and addition of extra dilution molecules between the substrate and the bilayer is that this architecture provides an ionic reservoir underneath the membrane, avoiding direct contact of the embedded membrane proteins with the gold electrodes and increasing the lateral diffusion of the bilayer, thus allowing for the incorporation of complex channels proteins which are failed in non-diluted systems. The tBLM is completed by fusion of liposomes made from a mixture of 1,2-diphythanolyl-sn-glycero-3-phosphocholine (DPhyPC), cholesterol, and 1,2-diphytanoyl-sn-Glycero-3-phosphate (DPhyPG) in a molar ratio of 6:3:1. Varying the mixing ratio, the optimum mixing ratio was obtained at a dilution factor of DPTL and TEGL at 90%:10%. Only under these conditions, the mixed tBLM showed electrical properties, as shown by EIS, which are comparable to a BLM. With higher dilution factors, a defect-free lipid bilayer was not formed. Formation of bilayers have been characterized by different techniques, such as surface plasmon resonance (SPR), electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM), and quartz crystal microbalance (QCM). Different proteins such as hemolysin, melittin, gramicidin, M2, Maxi-K, nAChR and bacteriohodopsin are incorporated into these tBLMs as shown by SPR and EIS studies. Ionic conductivity at 0 V vs. Ag|AgCl, 3M KCl were measured by EIS measurements. Our results indicate that these proteins have been successfully incorporated into a very stable tBLM environment in a functionally active form. Therefore, we conclude that the mixed tBLMs have been successfully designed as a general platform for biosensing and screening purposes of membrane proteins.