3 resultados para Ink
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In this thesis, we investigated the evaporation of sessile microdroplets on different solid substrates. Three major aspects were studied: the influence of surface hydrophilicity and heterogeneity on the evaporation dynamics for an insoluble solid substrate, the influence of external process parameters and intrinsic material properties on microstructuring of soluble polymer substrates and the influence of an increased area to volume ratio in a microfluidic capillary, when evaporation is hindered. In the first part, the evaporation dynamics of pure sessile water drops on smooth self-assembled monolayers (SAMs) of thiols or disulfides on gold on mica was studied. With increasing surface hydrophilicity the drop stayed pinned longer. Thus, the total evaporation time of a given initial drop volume was shorter, since the drop surface, through which the evaporation occurs, stays longer large. Usually, for a single drop the volume decreased linearly with t1.5, t being the evaporation time, for a diffusion-controlled evaporation process. However, when we measured the total evaporation time, ttot, for multiple droplets with different initial volumes, V0, we found a scaling of the form V0 = attotb. The more hydrophilic the substrate was, the more showed the scaling exponent a tendency to an increased value up to 1.6. This can be attributed to an increasing evaporation rate through a thin water layer in the vicinity of the drop. Under the assumption of a constant temperature at the substrate surface a cooling of the droplet and thus a decreased evaporation rate could be excluded as a reason for the different scaling exponent by simulations performed by F. Schönfeld at the IMM, Mainz. In contrast, for a hairy surface, made of dialkyldisulfide SAMs with different chain lengths and a 1:1 mixture of hydrophilic and hydrophobic end groups (hydroxy versus methyl group), the scaling exponent was found to be ~ 1.4. It increased to ~ 1.5 with increasing hydrophilicity. A reason for this observation can only be speculated: in the case of longer hydrophobic alkyl chains the formation of an air layer between substrate and surface might be favorable. Thus, the heat transport to the substrate might be reduced, leading to a stronger cooling and thus decreased evaporation rate. In the second part, the microstructuring of polystyrene surfaces by drops of toluene, a good solvent, was investigated. For this a novel deposition technique was developed, with which the drop can be deposited with a syringe. The polymer substrate is lying on a motorized table, which picks up the pendant drop by an upward motion until a liquid bridge is formed. A consecutive downward motion of the table after a variable delay, i.e. the contact time between drop and polymer, leads to the deposition of the droplet, which can evaporate. The resulting microstructure is investigated in dependence of the processes parameters, i.e. the approach and the retraction speed of the substrate and the delay between them, and in dependence of the intrinsic material properties, i.e. the molar mass and the type of the polymer/solvent system. The principal equivalence with the microstructuring by the ink-jet technique was demonstrated. For a high approach and retraction speed of 9 mm/s and no delay between them, a concave microtopology was observed. In agreement with the literature, this can be explained by a flow of solvent and the dissolved polymer to the rim of the pinned droplet, where polymer is accumulated. This effect is analogue to the well-known formation of ring-like stains after the evaporation of coffee drops (coffee-stain effect). With decreasing retraction speed down to 10 µm/s the resulting surface topology changes from concave to convex. This can be explained with the increasing dissolution of polymer into the solvent drop prior to the evaporation. If the polymer concentration is high enough, gelation occurs instead of a flow to the rim and the shape of the convex droplet is received. With increasing delay time from below 0 ms to 1s the depth of the concave microwells decreases from 4.6 µm to 3.2 µm. However, a convex surface topology could not be obtained, since for longer delay times the polymer sticks to the tip of the syringe. Thus, by changing the delay time a fine-tuning of the concave structure is accomplished, while by changing the retraction speed a principal change of the microtopolgy can be achieved. We attribute this to an additional flow inside the liquid bridge, which enhanced polymer dissolution. Even if the pendant drop is evaporating about 30 µm above the polymer surface without any contact (non-contact mode), concave structures were observed. Rim heights as high as 33 µm could be generated for exposure times of 20 min. The concave structure exclusively lay above the flat polymer surface outside the structure even after drying. This shows that toluene is taken up permanently. The increasing rim height, rh, with increasing exposure time to the solvent vapor obeys a diffusion law of rh = rh0  tn, with n in the range of 0.46 ~ 0.65. This hints at a non-Fickian swelling process. A detailed analysis showed that the rim height of the concave structure is modulated, unlike for the drop deposition. This is due to the local stress relaxation, which was initiated by the increasing toluene concentration in the extruded polymer surface. By altering the intrinsic material parameters i.e. the polymer molar mass and the polymer/solvent combination, several types of microstructures could be formed. With increasing molar mass from 20.9 kDa to 1.44 MDa the resulting microstructure changed from convex, to a structure with a dimple in the center, to concave, to finally an irregular structure. This observation can be explained if one assumes that the microstructuring is dominated by two opposing effects, a decreasing solubility with increasing polymer molar mass, but an increasing surface tension gradient leading to instabilities of Marangoni-type. Thus, a polymer with a low molar mass close or below the entanglement limit is subject to a high dissolution rate, which leads to fast gelation compared to the evaporation rate. This way a coffee-rim like effect is eliminated early and a convex structure results. For high molar masses the low dissolution rate and the low polymer diffusion might lead to increased surface tension gradients and a typical local pile-up of polymer is found. For intermediate polymer masses around 200 kDa, the dissolution and evaporation rate are comparable and the typical concave microtopology is found. This interpretation was supported by a quantitative estimation of the diffusion coefficient and the evaporation rate. For a different polymer/solvent system, polyethylmethacrylate (PEMA)/ethylacetate (EA), exclusively concave structures were found. Following the statements above this can be interpreted with a lower dissolution rate. At low molar masses the concentration of PEMA in EA most likely never reaches the gelation point. Thus, a concave instead of a convex structure occurs. At the end of this section, the optically properties of such microstructures for a potential application as microlenses are studied with laser scanning confocal microscopy. In the third part, the droplet was confined into a glass microcapillary to avoid evaporation. Since here, due to an increased area to volume ratio, the surface properties of the liquid and the solid walls became important, the influence of the surface hydrophilicity of the wall on the interfacial tension between two immiscible liquid slugs was investigated. For this a novel method for measuring the interfacial tension between the two liquids within the capillary was developed. This technique was demonstrated by measuring the interfacial tensions between slugs of pure water and standard solvents. For toluene, n-hexane and chloroform 36.2, 50.9 and 34.2 mN/m were measured at 20°C, which is in a good agreement with data from the literature. For a slug of hexane in contact with a slug of pure water containing ethanol in a concentration range between 0 and 70 (v/v %), a difference of up to 6 mN/m was found, when compared to commercial ring tensiometry. This discrepancy is still under debate.
Resumo:
Dendritic systems, and in particular polyphenylene dendrimers, have recently attracted considerable attention from the synthetic organic chemistry community, as well as from photophysicists, particularly in view of the search for synthetic model analogies to photoelectric materials to fabricate organic light-emitting diodes (OLEDs), and even more advanced areas of research such as light-harvesting system, energy transfer and non-host device. Geometrically, dendrimers are unique systems that consist of a core, one or more dendrons, and surface groups. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Compared to small molecular or polymeric light-emitting materials, these dendritic materials can combine the benefits of both previous classes. The high molecular weights of these dendritic macromolecules, as well as the surface groups often attached to the distal ends of the dendrons, can improve the solution processability, and thus can be deposited from solution by simple processes such as spin-coating and ink-jet printing. Moreover, even better than the traditional polymeric light-emitting materials, the well-defined monodisperse distributed dendrimers possess a high purity comparable to that of small molecules, and as such can be fabricated into high performance OLEDs. Most importantly, the emissive chromophores can be located at the core of the dendrimer, within the dendrons, and/or at the surface of the dendrimers because of their unique dendritic architectures. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Therefore, the main goals of this thesis are the design and synthesis, characterization of novel functional dendrimers, e.g. polytriphenylene dendrimers for blue fluorescent, as well as iridium(III) complex cored polyphenylene dendrimers for green and red phosphorescent light emitting diodes. In additional to the above mentioned advantages of dendrimer based OLEDs, the modular molecular architecture and various functionalized units at different locations in polyphenylene dendrimers open up a tremendous scope for tuning a wide range of properties in addition to color, such as intermolecular interactions, charge mobility, quantum yield, and exciton diffusion. In conclusion, research into dendrimer containing OLEDs combines fundamental aspects of organic semiconductor physics, novel and highly sophisticated organic synthetic chemistry and elaborate device technology.rn
Resumo:
Die pneumatische Zerstäubung ist die häufigste Methode der Probenzuführung von Flüssigkeiten in der Plasmaspektrometrie. Trotz der bekannten Limitierungen dieser Systeme, wie die hohen Probenverluste, finden diese Zerstäuber aufgrund ihrer guten Robustheit eine breite Anwendung. Die flussratenabhängige Aerosolcharakteristik und pumpenbasierte Signalschwankungen limitieren bisher Weiterentwicklungen. Diese Probleme werden umso gravierender, je weiter die notwendige Miniaturisierung dieser Systeme fortschreitet. Der neuartige Ansatz dieser Arbeit basiert auf dem Einsatz modifizierter Inkjet-Druckerpatronen für die Dosierung von pL-Tropfen. Ein selbst entwickelter Mikrokontroller ermöglicht den Betrieb von matrixkodierten Patronen des Typs HP45 mit vollem Zugriff auf alle essentiellen Betriebsparameter. Durch die neuartige Aerosoltransportkammer gelang die effiziente Kopplung des Tropfenerzeugungssystems an ein ICP-MS. Das so aufgebaute drop-on-demand-System (DOD) zeigt im Vergleich zu herkömmlichen und miniaturisierten Zerstäubern eine deutlich gesteigerte Empfindlichkeit (8 - 18x, elementabhängig) bei leicht erhöhtem, aber im Grunde vergleichbarem Signalrauschen. Darüber hinaus ist die Flexibilität durch die große Zahl an Freiheitsgraden des Systems überragend. So ist die Flussrate über einen großen Bereich variabel (5 nL - 12,5 µL min-1), ohne dabei die primäre Aerosolcharakteristik zu beeinflussen, welche vom Nutzer durch Wahl der elektrischen Parameter bestimmt wird. Das entwickelte Probenzuführungssystem ist verglichen mit dem pneumatischen Referenzsystem weniger anfällig gegenüber Matrixeffekten beim Einsatz von realen Proben mit hohen Anteilen gelöster Substanzen. So gelingt die richtige Quantifizierung von fünf Metallen im Spurenkonzentrationsbereich (Li, Sr, Mo, Sb und Cs) in nur 12 µL Urin-Referenzmaterial mittels externer Kalibrierung ohne Matrixanpassung. Wohingegen beim pneumatischen Referenzsystem die aufwändigere Standardadditionsmethode sowie über 250 µL Probenvolumen für eine akkurate Bestimmung der Analyten nötig sind. Darüber hinaus wird basierend auf der Dosierfrequenz eines dualen DOD-Systems eine neuartige Kalibrierstrategie vorgestellt. Bei diesem Ansatz werden nur eine Standard- und eine Blindlösung anstelle einer Reihe unterschiedlich konzentrierter Standards benötigt, um eine lineare Kalibrierfunktion zu erzeugen. Zusätzlich wurde mittels selbst entwickelter, zeitlich aufgelöster ICP-MS umfangreiche Rauschspektren aufgenommen. Aus diesen gelang die Ermittlung der Ursache des erhöhten Signalrauschens des DOD, welches maßgeblich durch das zeitlich nicht äquidistante Eintreffen der Tropfen am Detektor verursacht wird. Diese Messtechnik erlaubt auch die Detektion einzeln zugeführter Tropfen, wodurch ein Vergleich der Volumenverteilung der mittels ICP-MS detektierten, gegenüber den generierten und auf optischem Wege charakterisierten Tropfen möglich wurde. Dieses Werkzeug ist für diagnostische Untersuchungen äußerst hilfreich. So konnte aus diesen Studien neben der Aufklärung von Aerosoltransportprozessen die Transporteffizienz des DOD ermittelt werden, welche bis zu 94 Vol.-% beträgt.