6 resultados para Infinite System of Singular Integral Equations
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Investigations on formation and specification of neural precursor cells in the central nervous system of the Drosophila melanogaster embryoSpecification of a unique cell fate during development of a multicellular organism often is a function of its position. The Drosophila central nervous system (CNS) provides an ideal system to dissect signalling events during development that lead to cell specific patterns. Different cell types in the CNS are formed from a relatively few precursor cells, the neuroblasts (NBs), which delaminate from the neurogenic region of the ectoderm. The delamination occurs in five waves, S1-S5, finally leading to a subepidermal layer consisting of about 30 NBs, each with a unique identity, arranged in a stereotyped spatial pattern in each hemisegment. This information depends on several factors such as the concentrations of various morphogens, cell-cell interactions and long range signals present at the position and time of its birth. The early NBs, delaminating during S1 and S2, form an orthogonal array of four rows (2/3,4,5,6/7) and three columns (medial, intermediate, and lateral) . However, the three column and four row-arrangement pattern is only transitory during early stages of neurogenesis which is obscured by late emerging (S3-S5) neuroblasts (Doe and Goodman, 1985; Goodman and Doe, 1993). Therefore the aim of my study has been to identify novel genes which play a role in the formation or specification of late delaminating NBs.In this study the gene anterior open or yan was picked up in a genetic screen to identity novel and yet unidentified genes in the process of late neuroblast formation and specification. I have shown that the gene yan is responsible for maintaining the cells of the neuroectoderm in an undifferentiated state by interfering with the Notch signalling mechanism. Secondly, I have studied the function and interactions of segment polarity genes within a certain neuroectodermal region, namely the engrailed (en) expressing domain, with regard to the fate specification of a set of late neuroblasts, namely NB 6-4 and NB 7-3. I have dissected the regulatory interaction of the segment polarity genes wingless (wg), hedgehog (hh) and engrailed (en) as they maintain each others expression to show that En is a prerequisite for neurogenesis and show that the interplay of the segmentation genes naked (nkd) and gooseberry (gsb), both of which are targets of wingless (wg) activity, leads to differential commitment of NB 7-3 and NB 6-4 cell fate. I have shown that in the absence of either nkd or gsb one NB fate is replaced by the other. However, the temporal sequence of delamination is maintained, suggesting that formation and specification of these two NBs are under independent control.
Resumo:
Zusammenfassung Ein 3-dimensionales globales Modell der unterenAtmosphäre wurde für die Untersuchung derOzonchemie, sowie der Chemie des Hydroxylradikals (OH) undwichtiger Vorläufersubstanzen, wie reaktiverStickstoffverbindungen und Kohlenwasserstoffe, verwendet.Hierfür wurde die Behandlung vonNicht-Methan-Kohlenwasserstoffen (NMKW) hinzugefügt,was auch die Entwicklung einer vereinfachten Beschreibungihrer Chemie, sowie die Erfassung von Depositionsprozessenund Emissionen erforderte. Zur Lösung der steifengewöhnlichen Differentialgleichungen der Chemie wurdeeine schnelles Rosenbrock-Verfahren eingesetzt, das soimplementiert wurde, dass die Modell-Chemie fürzukünftige Studien leicht abgeändert werden kann. Zur Evaluierung des Modells wurde ein umfangreicherVergleich der Modellergebnisse mit Bodenmessungen, sowieFlugzeug-, Sonden- und Satelliten-Daten durchgeführt.Das Modell kann viele Aspekte der Beobachtungen derverschieden Substanzen realistisch wiedergeben. Es wurdenjedoch auch einige Diskrepanzen festgestellt, die Hinweiseauf fehlerhafte Emissionsfelder oder auf die Modell-Dynamikund auch auf fehlende Modell-Chemie liefern. Zur weiteren Untersuchung des Einflusses verschiedenerStoffgruppen wurden drei Läufe mit unterschiedlichkomplexer Chemie analysiert. Durch das Berücksichtigender NMKW wird die Verteilung mehrerer wichtiger Substanzensignifikant beeinflusst, darunter z.B. ein Anstieg desglobalen Ozons. Es wurde gezeigt, dass die biogene SubstanzIsopren etwa die Hälfte des Gesamteffekts der NMKWausmachte (mehr in den Tropen, weniger anderswo). In einer Sensitivitätsstudie wurden die Unsicherheitenbei der Modellierung von Isopren weitergehend untersucht.Dabei konnte gezeigt werden, dass die Unsicherheit beiphysikalischen Aspekten (Deposition und heterogene Prozesse)ebenso groß sein kann, wie die aus dem chemischenGasphasen-Mechanismus stammende, welche zu globalbedeutsamen Abweichungen führte. Lokal können sichnoch größere Abweichungen ergeben. Zusammenfassend kann gesagt werden, dass die numerischenStudien dieser Arbeit neue Einblicke in wichtige Aspekte derPhotochemieder Troposphäre ergaben und in Vorschläge fürweiter Studien mündeten, die die wichtigsten gefundenenUnsicherheiten weiter verringern könnten.
Resumo:
Wegen der fortschreitenden Miniaturisierung von Halbleiterbauteilen spielen Quanteneffekte eine immer wichtigere Rolle. Quantenphänomene werden gewöhnlich durch kinetische Gleichungen beschrieben, aber manchmal hat eine fluid-dynamische Beschreibung Vorteile: die bessere Nutzbarkeit für numerische Simulationen und die einfachere Vorgabe von Randbedingungen. In dieser Arbeit werden drei Diffusionsgleichungen zweiter und vierter Ordnung untersucht. Der erste Teil behandelt die implizite Zeitdiskretisierung und das Langzeitverhalten einer degenerierten Fokker-Planck-Gleichung. Der zweite Teil der Arbeit besteht aus der Untersuchung des viskosen Quantenhydrodynamischen Modells in einer Raumdimension und dessen Langzeitverhaltens. Im letzten Teil wird die Existenz von Lösungen einer parabolischen Gleichung vierter Ordnung in einer Raumdimension bewiesen, und deren Langzeitverhalten studiert.
Resumo:
This study deals with the function and regulation of programmed cell death, or apoptosis, in the development of the embryonic central nervous system of Drosophila melanogaster. The first part provides a description of apoptosis-deficient embryos, which showed that preventing apoptosis does not cause gross morphological defects in the CNS, as it appears well organized despite the presence of too many cells. An analysis of the incidence and pattern of apoptosis over the course of development discloses a partly very orderly pattern suggesting tight spatio-temporal control, but also reveals random apoptotic cells, which suggests a certain amount of plasticity in the embryo. This analysis also allowed precise identification of some of the dying neural cells in the embryo, and establishment of single cell models for studying regulation of segment-specific apoptosis in the embryonic CNS. In the second part of the work, further investigations into mechanisms controlling segment-specific apoptosis revealed the involvement of two Hox genes, Antennapedia (Antp) and Ultrabithorax (Ubx), in this process. Hox genes control the formation of segment-specific structures in their domains of expression, but also regulate organ and tissue morphogenesis. The study presented here shows that Antp and Ubx play antagonistic roles in motoneuron survival in the embryo. Ubx expression in the CNS is strongly upregulated at a late point in development, when most cells have begun to differentiate. This upregulation shortly precedes Ubx-dependent, segment-specific apoptosis of two differentiated motoneurons. It could further be demonstrated that Antp is required for proper development of the NB7-3 lineage and for survival of the NB7-3 motoneuron in the anterior thoracic segments. In segments where Antp and Ubx expression overlaps, Ubx counteracts the anti-apoptotic function of Antp, resulting in cell death. Thus, these two Hox genes play opposing roles in the survival of differentiated neurons in the late developing nervous system. They thereby contribute to establishment of correct connections between outward-projecting neurons and their targets, which is crucial for the assembly of functional neural circuits, as these have to fulfill region-specific locomotion and sensory requirements along the antero-posterior body axis.
Resumo:
This thesis focuses on the design and characterization of a novel, artificial minimal model membrane system with chosen physical parameters to mimic a nanoparticle uptake process driven exclusively by adhesion and softness of the bilayer. The realization is based on polymersomes composed of poly(dimethylsiloxane)-b-poly(2-methyloxazoline) (PMDS-b-PMOXA) and nanoscopic colloidal particles (polystyrene, silica), and the utilization of powerful characterization techniques. rnPDMS-b-PMOXA polymersomes with a radius, Rh ~100 nm, a size polydispersity, PD = 1.1 and a membrane thickness, h = 16 nm, were prepared using the film rehydratation method. Due to the suitable mechanical properties (Young’s modulus of ~17 MPa and a bending modulus of ~7⋅10-8 J) along with the long-term stability and the modifiability, these kind of polymersomes can be used as model membranes to study physical and physicochemical aspects of transmembrane transport of nanoparticles. A combination of photon (PCS) and fluorescence (FCS) correlation spectroscopies optimizes species selectivity, necessary for a unique internalization study encompassing two main efforts. rnFor the proof of concepts, the first effort focused on the interaction of nanoparticles (Rh NP SiO2 = 14 nm, Rh NP PS = 16 nm; cNP = 0.1 gL-1) and polymersomes (Rh P = 112 nm; cP = 0.045 gL-1) with fixed size and concentration. Identification of a modified form factor of the polymersome entities, selectively seen in the PCS experiment, enabled a precise monitor and quantitative description of the incorporation process. Combining PCS and FCS led to the estimation of the incorporated particles per polymersome (about 8 in the examined system) and the development of an appropriate methodology for the kinetics and dynamics of the internalization process. rnThe second effort aimed at the establishment of the necessary phenomenology to facilitate comparison with theories. The size and concentration of the nanoparticles were chosen as the most important system variables (Rh NP = 14 - 57 nm; cNP = 0.05 - 0.2 gL-1). It was revealed that the incorporation process could be controlled to a significant extent by changing the nanoparticles size and concentration. Average number of 7 up to 11 NPs with Rh NP = 14 nm and 3 up to 6 NPs with Rh NP = 25 nm can be internalized into the present polymersomes by changing initial nanoparticles concentration in the range 0.1- 0.2 gL-1. Rapid internalization of the particles by polymersomes is observed only above a critical threshold particles concentration, dependent on the nanoparticle size. rnWith regard possible pathways for the particle uptake, cryogenic transmission electron microscopy (cryo-TEM) has revealed two different incorporation mechanisms depending on the size of the involved nanoparticles: cooperative incorporation of nanoparticles groups or single nanoparticles incorporation. Conditions for nanoparticle uptake and controlled filling of polymersomes were presented. rnIn the framework of this thesis, the experimental observation of transmembrane transport of spherical PS and SiO2 NPs into polymersomes via an internalization process was reported and examined quantitatively for the first time. rnIn a summary the work performed in frames of this thesis might have significant impact on cell model systems’ development and thus improved understanding of transmembrane transport processes. The present experimental findings help create the missing phenomenology necessary for a detailed understanding of a phenomenon with great relevance in transmembrane transport. The fact that transmembrane transport of nanoparticles can be performed by artificial model system without any additional stimuli has a fundamental impact on the understanding, not only of the nanoparticle invagination process but also of the interaction of nanoparticles with biological as well as polymeric membranes. rn
Resumo:
Staphylococcus carnosus is a facultative anaerobic bacterium which features the cytoplasmic NreABC system. It is necessary for regulation of nitrate respiration and the nitrate reductase gene narG in response to oxygen and nitrate availability. NreB is a sensor kinase of a two-component system and represents the oxygen sensor of the system. It binds an oxygen labile [4Fe-4S]2+ cluster under anaerobic conditions. NreB autophosphorylates and phosphoryl transfer activates the response regulator NreC which induces narG expression. The third component of the Nre system is the nitrate receptor NreA. In this study the role of the nitrate receptor protein NreA in nitrate regulation and its functional and physiological effect on oxygen regulation and interaction with the NreBC two-component system were detected. In vivo, a reporter gene assay for measuring expression of the NreABC regulated nitrate reductase gene narG was used for quantitative evaluation of NreA function. Maximal narG expression in wild type S. carnosus required anaerobic conditions and the presence of nitrate. Deletion of nreA allowed expression of narG under aerobic conditions, and under anaerobic conditions nitrate was no longer required for maximal induction. This indicates that NreA is a nitrate regulated inhibitor of narG expression. Purified NreA and variant NreA(Y95A) inhibited the autophosphorylation of anaerobic NreB in part and completely, respectively. Neither NreA nor NreA(Y95A) stimulated dephosphorylation of NreB-phosphate, however. Inhibition of phosphorylation was relieved completely when NreA with bound nitrate (NreA•[NO3-]) was used. The same effects of NreA were monitored with aerobically isolated Fe-S-less NreB, which indicates that NreA does not have an influence on the iron-sulfur cluster of NreB. In summary, the data of this study show that NreA interacts with the oxygen sensor NreB and controls its phosphorylation level in a nitrate dependent manner. This modulation of NreB-function by NreA and nitrate results in nitrate/oxygen co-sensing by an NreA/NreB sensory unit. It transmits the regulatory signal from oxygen and nitrate in a joint signal to target promoters. Therefore, nitrate and oxygen regulation of nitrate dissimilation follows a new mode of regulation not present in other facultative anaerobic bacteria.