9 resultados para INVERSE OPAL

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In dieser Arbeit wird die Herstellung und Anwendung von funktionalen Polymer-Opalen beschrieben. Für die Synthese von funktionalen monodipsersen Kolloiden, den Bausteinen der Opale, wird die emulgatorfreie Emulsionspolymerisation (SFEP) verwendet. Je nach einzubauendem funktionalem Molekül werden verschiedene Varianten der SFEP verwendet, wie z. B. Homopolymerisation, Copolymerisation, Polymerisation mit Fremdstoffen und die Herstellung von Kern-Schale-Kolloiden. Die so hergestellten monodispersen Kolloide formen durch Selbstorganisation über horizontale (Aufpipettieren, Rakeln, Sprühen) oder vertikale Kristallisation (Ziehmaschine)hochqualitative künstliche Opale. Die eingebauten Funktionalitäten öffnen den Weg zu einer Vielzahl von Anwendungen. Über die Spaltung von funktionalen Estergruppen kann eine lichtinduzierte Strukturierung durchgeführt werden. Der Einbau von Epoxidgruppen ermöglicht eine makroskopische Vernetzung wodurch die mechanische Stabilität der Struktur erhöht wird. Der Einsatz von Reaktivestern kann zur Oberflächen- funktionalisierung verwendet werden. Durch Replizierung der Struktur zum inversen Opal können weitere funktionale Materialien eingeführt werden, was die Einsatzmöglichkeiten noch erweitert.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work presented in this thesis deals with complex materials, which were obtained by self-assembly of monodisperse colloidal particles, also called colloidal crystallization. Two main fields of interest were investigated, the first dealing with the fabrication of colloidal monolayers and nanostructures, which derive there from. The second turned the focus on the phononic properties of colloidal particles, crystals, and glasses. For the fabrication of colloidal monolayers a method is introduced, which is based on the sparse distribution of dry colloidal particles on a parent substrate. In the ensuing floating step the colloidal monolayer assembles readily at the three-phase-contact line, giving a 2D hexagonally ordered film under the right conditions. The unique feature of this fabrication process is an anisotropic shrinkage, which occurs alongside with the floating step. This phenomenon is exploited for the tailored structuring of colloidal monolayers, leading to designed hetero-monolayers by inkjet printing. Furthermore, the mechanical stability of the floating monolayers allows the deposition on hydrophobic substrates, which enables the fabrication of ultraflat nanostructured surfaces. Densely packed arrays of crescent shaped nanoparticles have also been synthesized. It is possible to stack those arrays in a 3D manner allowing to mutually orientate the individual layers. In a step towards 3D mesoporous materials a methodology to synthesize hierarchically structured inverse opals is introduced. The deposition of colloidal particles in the free voids of a host inverse opal allows for the fabrication of composite inverse opals on two length scales. The phononic properties of colloidal crystals and films are characterized by Brillouin light scattering (BLS). At first the resonant modes of colloidal particles consisting of polystyrene, a copolymer of methylmethacrylate and butylacrylate, or of a silica core-PMMA shell topography are investigated, giving insight into their individual mechanical properties. The infiltration of colloidal films with an index matching liquid allows measuring the phonon dispersion relation. This leads to the assignment of band gaps to the material under investigation. Here, two band gaps could be found, one originating from the fcc order in the colloidal crystal (Bragg gap), the other stemming from the vibrational eigenmodes of the colloidal particles (hybridization gap).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antibody microarrays are of great research interest because of their potential application as biosensors for high-throughput protein and pathogen screening technologies. In this active area, there is still a need for novel structures and assemblies providing insight in binding interactions such as spherical and annulus-shaped protein structures, e.g. for the utilization of curved surfaces for the enhanced protein-protein interactions and detection of antigens. Therefore, the goal of the presented work was to establish a new technique for the label-free detection of bio-molecules and bacteria on topographically structured surfaces, suitable for antibody binding.rnIn the first part of the presented thesis, the fabrication of monolayers of inverse opals with 10 μm diameter and the immobilization of antibodies on their interior surface is described. For this purpose, several established methods for the linking of antibodies to glass, including Schiff bases, EDC/S-NHS chemistry and the biotin-streptavidin affinity system, were tested. The employed methods included immunofluorescence and image analysis by phase contrast microscopy. It could be shown that these methods were not successful in terms of antibody immobilization and adjacent bacteria binding. Hence, a method based on the application of an active-ester-silane was introduced. It showed promising results but also the need for further analysis. Especially the search for alternative antibodies addressing other antigens on the exterior of bacteria will be sought-after in the future.rnAs a consequence of the ability to control antibody-functionalized surfaces, a new technique employing colloidal templating to yield large scale (~cm2) 2D arrays of antibodies against E. coli K12, eGFP and human integrin αvβ3 on a versatile useful glass surface is presented. The antibodies were swept to reside around the templating microspheres during solution drying, and physisorbed on the glass. After removing the microspheres, the formation of annuli-shaped antibody structures was observed. The preserved antibody structure and functionality is shown by binding the specific antigens and secondary antibodies. The improved detection of specific bacteria from a crude solution compared to conventional “flat” antibody surfaces and the setting up of an integrin-binding platform for targeted recognition and surface interactions of eukaryotic cells is demonstrated. The structures were investigated by atomic force, confocal and fluorescence microscopy. Operational parameters like drying time, temperature, humidity and surfactants were optimized to obtain a stable antibody structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this present work high quality PMMA opals with different sphere sizes, silica opals from large size spheres, multilayer opals, and inverse opals were fabricated. Highly monodisperse PMMA spheres were synthesized by surfactant-free emulsion polymerization (polydispersity ~2%). Large-area and well-ordered PMMA crystalline films with a homogenous thickness were produced by the vertical deposition method using a drawing device. Optical experiments have confirmed the high quality of these PMMA photonic crystals, e.g., well resolved high-energy bands of the transmission and reflectance spectra of the opaline films were observed. For fabrication of high quality opaline photonic crystals from large silica spheres (diameter of 890 nm), self-assembled in patterned Si-substrates a novel technique has been developed, in which the crystallization was performed by using a drawing apparatus in combination with stirring. The achievements comprise a spatial selectivity of opal crystallization without special treatment of the wafer surface, the opal lattice was found to match the pattern precisely in width as well as depth, particularly an absence of cracks within the size of the trenches, and finally a good three-dimensional order of the opal lattice even in trenches with a complex confined geometry. Multilayer opals from opaline films with different sphere sizes or different materials were produced by sequential crystallization procedure. Studies of the transmission in triple-layer hetero-opal revealed that its optical properties cannot only be considered as the linear superposition of two independent photonic bandgaps. The remarkable interface effect is the narrowing of the transmission minima. Large-area, high-quality, and robust photonic opal replicas from silicate-based inorganic-organic hybrid polymers (ORMOCER® s) were prepared by using the template-directed method, in which a high quality PMMA opal template was infiltrated with a neat inorganic-organic ORMOCER® oligomer, which can be photopolymerized within the opaline voids leading to a fully-developed replica structure with a filling factor of nearly 100%. This opal replica is structurally homogeneous, thermally and mechanically stable and the large scale (cm2 size) replica films can be handled easily as free films with a pair of tweezers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. Despite a concentrated effort by physicists extending over many years, an understanding of QCD from first principles continues to be elusive. Fortunately, data continues to appear which provide a rather direct probe of the inner workings of the strong interactions. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. EIT is a technology developed to image the electrical conductivity distribution of a conductive medium. The technique works by performing simultaneous measurements of direct or alternating electric currents and voltages on the boundary of an object. These are the data used by an image reconstruction algorithm to determine the electrical conductivity distribution within the object. In this thesis, two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A promising result is that one can qualitatively reconstruct the conductivity inside the cross-section of a human chest. Even though the human volunteer is neither two-dimensional nor circular, such reconstructions can be useful in medical applications: monitoring for lung problems such as accumulating fluid or a collapsed lung and noninvasive monitoring of heart function and blood flow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, an improved protocol for inverse size-exclusion chromatography (ISEC) was established to assess important pore structural data of porous silicas as stationary phases in packed chromatographic columns. After the validity of the values generated by ISEC was checked by comparison with data obtained from traditional methods like nitrogen sorption at 77 K (Study A), the method could be successfully employed as valuable tool at the development of bonded poly(methacrylate)-coated silicas, while traditional methods generate partially incorrect pore structural information (Study B). Study A: Different mesoporous silicas were converted by a pseudomorphical transition into ordered MCM-41-type silica while maintaining the particle-size and -shape. The essential parameters like specific surface area, average pore diameter and specific pore volume, the pore connectivity from ISEC remained nearly the same which was reflected by the same course of the theoretical plate height vs. linear velocity curves. Study B: In the development of bonded poly(methacrylate)-coated silicas for the reversed phase separation of biopolymers, ISEC was the only method to generate valid pore structural information of the polymer-coated materials. Synthesis procedures were developed to obtain reproducibly covalently bonded poly(methacrylate) coatings with good thermal stability on different base materials, employing as well particulate and monolithic materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In various imaging problems the task is to use the Cauchy data of the solutions to an elliptic boundary value problem to reconstruct the coefficients of the corresponding partial differential equation. Often the examined object has known background properties but is contaminated by inhomogeneities that cause perturbations of the coefficient functions. The factorization method of Kirsch provides a tool for locating such inclusions. In this paper, the factorization technique is studied in the framework of coercive elliptic partial differential equations of the divergence type: Earlier it has been demonstrated that the factorization algorithm can reconstruct the support of a strictly positive (or negative) definite perturbation of the leading order coefficient, or if that remains unperturbed, the support of a strictly positive (or negative) perturbation of the zeroth order coefficient. In this work we show that these two types of inhomogeneities can, in fact, be located simultaneously. Unlike in the earlier articles on the factorization method, our inclusions may have disconnected complements and we also weaken some other a priori assumptions of the method. Our theoretical findings are complemented by two-dimensional numerical experiments that are presented in the framework of the diffusion approximation of optical tomography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proton-nucleus elastic scattering at intermediate energies is a well-established method for the investigation of the nuclear matter distribution in stable nuclei and was recently applied also for the investigation of radioactive nuclei using the method of inverse kinematics. In the current experiment, the differential cross sections for proton elastic scattering on the isotopes $^{7,9,10,11,12,14}$Be and $^8$B were measured. The experiment was performed using the fragment separator at GSI, Darmstadt to produce the radioactive beams. The main part of the experimental setup was the time projection ionization chamber IKAR which was simultaneously used as hydrogen target and a detector for the recoil protons. Auxiliary detectors for projectile tracking and isotope identification were also installed. As results from the experiment, the absolute differential cross sections d$sigma$/d$t$ as a function of the four momentum transfer $t$ were obtained. In this work the differential cross sections for elastic p-$^{12}$Be, p-$^{14}$Be and p-$^{8}$B scattering at low $t$ ($t leq$~0.05~(GeV/c)$^2$) are presented. The measured cross sections were analyzed within the Glauber multiple-scattering theory using different density parameterizations, and the nuclear matter density distributions and radii of the investigated isotopes were determined. The analysis of the differential cross section for the isotope $^{14}$Be shows that a good description of the experimental data is obtained when density distributions consisting of separate core and halo components are used. The determined {it rms} matter radius is $3.11 pm 0.04 pm 0.13$~fm. In the case of the $^{12}$Be nucleus the results showed an extended matter distribution as well. For this nucleus a matter radius of $2.82 pm 0.03 pm 0.12$~fm was determined. An interesting result is that the free $^{12}$Be nucleus behaves differently from the core of $^{14}$Be and is much more extended than it. The data were also compared with theoretical densities calculated within the FMD and the few-body models. In the case of $^{14}$Be, the calculated cross sections describe the experimental data well while, in the case of $^{12}$Be there are discrepancies in the region of high momentum transfer. Preliminary experimental results for the isotope $^8$B are also presented. An extended matter distribution was obtained (though much more compact as compared to the neutron halos). A proton halo structure was observed for the first time with the proton elastic scattering method. The deduced matter radius is $2.60pm 0.02pm 0.26$~fm. The data were compared with microscopic calculations in the frame of the FMD model and reasonable agreement was observed. The results obtained in the present analysis are in most cases consistent with the previous experimental studies of the same isotopes with different experimental methods (total interaction and reaction cross section measurements, momentum distribution measurements). For future investigation of the structure of exotic nuclei a universal detector system EXL is being developed. It will be installed at the NESR at the future FAIR facility where higher intensity beams of radioactive ions are expected. The usage of storage ring techniques provides high luminosity and low background experimental conditions. Results from the feasibility studies of the EXL detector setup, performed at the present ESR storage ring, are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die vorliegende Arbeit behandelt Vorwärts- sowie Rückwärtstheorie transienter Wirbelstromprobleme. Transiente Anregungsströme induzieren elektromagnetische Felder, welche sogenannte Wirbelströme in leitfähigen Objekten erzeugen. Im Falle von sich langsam ändernden Feldern kann diese Wechselwirkung durch die Wirbelstromgleichung, einer Approximation an die Maxwell-Gleichungen, beschrieben werden. Diese ist eine lineare partielle Differentialgleichung mit nicht-glatten Koeffizientenfunktionen von gemischt parabolisch-elliptischem Typ. Das Vorwärtsproblem besteht darin, zu gegebener Anregung sowie den umgebungsbeschreibenden Koeffizientenfunktionen das elektrische Feld als distributionelle Lösung der Gleichung zu bestimmen. Umgekehrt können die Felder mit Messspulen gemessen werden. Das Ziel des Rückwärtsproblems ist es, aus diesen Messungen Informationen über leitfähige Objekte, also über die Koeffizientenfunktion, die diese beschreibt, zu gewinnen. In dieser Arbeit wird eine variationelle Lösungstheorie vorgestellt und die Wohlgestelltheit der Gleichung diskutiert. Darauf aufbauend wird das Verhalten der Lösung für verschwindende Leitfähigkeit studiert und die Linearisierbarkeit der Gleichung ohne leitfähiges Objekt in Richtung des Auftauchens eines leitfähigen Objektes gezeigt. Zur Regularisierung der Gleichung werden Modifikationen vorgeschlagen, welche ein voll parabolisches bzw. elliptisches Problem liefern. Diese werden verifiziert, indem die Konvergenz der Lösungen gezeigt wird. Zuletzt wird gezeigt, dass unter der Annahme von sonst homogenen Umgebungsparametern leitfähige Objekte eindeutig durch die Messungen lokalisiert werden können. Hierzu werden die Linear Sampling Methode sowie die Faktorisierungsmethode angewendet.