2 resultados para INTERSPERSED REPETITIVE ELEMENTS
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Identifizierung, Sequenzierung und Charakterisierung des Dmxl1-Gen in Mus musculus sowie die funktionelle Analyse durch Knock-OutrnrnBei Dmxl1 handelt es sich um ein neuartiges Gen aus Mus musculus. Das ebenfalls in der vorliegenden Arbeit bioinformatisch untersuchte Gen DMXL1 ist das zu Dmxl1 homologe Gen des Menschen. Beide Gene bestehen aus 43 Exons, das murine Dmxl1 codiert für eine mRNA von 10992 bp bzw. 12210 bp, das humane DMXL1 kodiert für eine cDNA von 11082 bp, der offene Leserahmen umfasst bei der Maus 9042 bp. In der Maus konnte ein mögliches alternatives Polyadenylierungssignal identifiziert werden. Zwischen beiden Spezies sind die Exonpositionen und ihre Längen hoch konserviert. Dmxl1 liegt auf dem Crick-Strang von Chromosom 18 Bande C, der translatierte Bereich erstreckt sich auf genomischer Ebene über 129558 bp und die Orientierung verläuft in Richtung Centromer. Dmxl1 und DMXL1 gehören damit zu den größten bekannten Genen in Maus und Mensch. Bei beiden Spezies liegen die DmX-Homologen genomisch innerhalb eines Bereichs der Isochoren-Klasse L1 in einer Gen-armen Region. Die Anzahl der repetitiven Elemente innerhalb der Genregion von Dmxl1 liegt 6% unter dem erwarteten Wert eines L1 Isochors, die Anzahl beim Menschen liegt 4% über dem erwarteten Wert. Um die mögliche Promotorstruktur von Dmxl1 darzustellen, wurden umfangreiche in silico-Analysen der Region um den putativen Transkriptionsstart vorgenommen. Mit Hilfe der gewonnenen Daten konnte ein Transkriptionstartpunkt identifiziert werden. Zudem wurde eine Promotorstruktur erarbeitet, bei der angenommen werden kann, dass sie eine gute Näherung an die tatsächlich vorhandenen Bindungsstellen von Transkriptionsfaktoren darstellt. Die mit bioinformatischen Werkzeugen erzeugte virtuelle Promotor- und Enhancerstruktur zeigt das Potenzial, Dmxl1 basal und ubiquitär zu exprimieren. Gleichzeitig zeigen diese Daten, dass Dmxl1 vermutlich in einigen Geweben der Keimbahn, im Fettgewebe, dem blutbildenen System und während der Embryogenese hochkomplex reguliert werden kann. Eine regulierte Expression zur Steuerung des Energiestoffwechsels ist ebenfalls wahrscheinlich. Diese Ergebnisse passen sehr gut zu den experimentell ermittelten Daten und den beobachteten Phänotypen Dmxl1-chimärer Mäuse.rnDie abgeleitete Aminosäuresequenz umfasst in der Maus 3013 AS, im Menschen 3027 AS, der Vergleich der abgeleiteten Aminosäuresequenzen zeigt eine Identität von 89,3 % und eine Similarität von 94,7 % zwischen beiden Spezies. Im Dmxl1/DMXL1-Protein von Maus und Mensch konnten mindestens 24 und maximal 36 WD-Wiederholungseinheiten identifiziert werden, zudem wurden eine Reihe weiterer konservierter Proteinmotive gefunden. Die in silico-Strukturanalysen beider abgeleiteter Aminosäuresequenzen lässt vermuten, dass sich C- und N-terminal WD-Propellerstrukturen befinden. In dieser Arbeit gelang eine C-terminale Rekonstruktion einer 10-blättrigen Propellerstruktur, denkbar ist jedoch auch eine Struktur mit mindestens drei WD-Propellern, wenn eine prädominante Struktur mit Propellern aus jeweils sieben Propellerblättern angenommen wird.rnDas primäre Ziel dieser Arbeit, die Etablierung einer stabilen Mauslinie mit diruptiertem Dmxl1-Gen konnte aufgrund einer beobachteten Haploinsuffizienz nicht erreicht werden. Trotz zahlreicher Transformationen von Maus-Stammzelllinien konnte letztlich nur eine stabil transformierte Linie mit einem Dmxl1-Null-Allel identifiziert werden, was auch zu den theoretischen Daten und den angenommenen Aufgaben von Dmxl1 als komplex und diffizil reguliertes Multifunktions-Protein passt. Aus der transformierten Mauszelllinie konnten chimäre Mäuse entwickelt werden, die in Abhängigkeit von dem Ausmaß des Chimärismus phänotypisch massive Schädigungen aufwiesen. Neben einer Teilsterilität wurden massive Fettleibigkeit und ein ausgeprägter Hypogonadismus beobachtet. Keines der Tiere war in der Lage das Dmxl1-Null-Allel zu transduzieren. Die Tiere waren nur sehr eingeschränkt fertil, die wenigen Nachkommen entsprachen genotypisch und phänotypisch ausschließlich den verwendeten Blastocysten.rn
Resumo:
Die S-adenosyl-L-Homocysteinhydrolase (AHCY)-Defizienz ist eine seltene autosomal rezessive Erbkrankheit, bei der Mutationen im AHCY-Gen die Funktionsfähigkeit des kodierten Enzyms beeinträchtigen. Diese Krankheit führt zu Symptomen wie Entwicklungsverzögerungen, mentaler Retardierung und Myopathie. In der vorliegenden Arbeit wurde der Einfluss der AHCY-Defizienz auf die Methylierung der DNA in Blutproben und Fibroblasten von Patienten mit AHCY-Defizienz, sowie in HEK293- und HepG2-Zelllinien mit AHCY-Knockdown untersucht. Der gesamtgenomische Methylierungsstatus wurde mit Hilfe des MethylFlash ™ Methylated DNA Quantification Kit (Epigentek) bei drei Patienten-Blutproben festgestellt. In den Blutproben von sieben Patienten und Fibroblasten von einem Patienten wurde die Methylierung von DMRs sieben geprägter Gene (GTL2, H19, LIT1, MEST, NESPAS, PEG3, SNRPN) und zwei repetitiver Elemente (Alu, LINE1) mittels Bisulfit-Pyrosequenzierung quantifiziert und durch High Resolution Melting-Analyse bestätigt. Zusätzlich wurde eine genomweite Methylierungsanalyse mit dem Infinium® HumanMethylation450 BeadChip (Illumina) für vier Patientenproben durchgeführt und die Expression von AHCY in Fibroblasten mittels Expressions-qPCR und QUASEP-Analyse untersucht. Die Methylierungsanalysen ergaben eine Hypermethylierung der gesamtgenomischen DNA und stochastische Hypermethylierungen von DMRs geprägter Gene bei einigen Patienten. Die HEK293- und HepG2-Zelllinien wiesen dagegen hauptsächlich stochastische Hypomethylierungen an einigen DMRs geprägter Gene und LINE1-Elementen auf. Die genomweite Methylierungsarray-Analyse konnte die Ergebnisse der Bisulfit-Pyrosequenzierung nicht bestätigen. Die Expressionsanalysen der AHCY-defizienten Fibroblasten zeigten eine verminderte Expression von AHCY, wobei beide Allele etwa gleich stark transkribiert wurden. Die Ergebnisse deuten darauf hin, dass die AHCY-Defizienz eine gute Modellerkrankung für die Untersuchung biologischer Konsequenzen von Methylierungsstörungen im Rahmen der Epigenetik-Forschung sein könnte. Sie ist unseres Wissens die erste monogene Erkrankung mit symptomaler DNA-Hypermethylierung beim Menschen.