10 resultados para IMMISCIBLE POLYMER BLENDS

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conjugated polymers and conjugated polymer blends have attracted great interest due to their potential applications in biosensors and organic electronics. The sub-100 nm morphology of these materials is known to heavily influence their electromechanical properties and the performance of devices they are part of. Electromechanical properties include charge injection, transport, recombination, and trapping, the phase behavior and the mechanical robustness of polymers and blends. Electrical scanning probe microscopy techniques are ideal tools to measure simultaneously electric (conductivity and surface potential) and dielectric (dielectric constant) properties, surface morphology, and mechanical properties of thin films of conjugated polymers and their blends.rnIn this thesis, I first present a combined topography, Kelvin probe force microscopy (KPFM), and scanning conductive torsion mode microscopy (SCTMM) study on a gold/polystyrene model system. This system is a mimic for conjugated polymer blends where conductive domains (gold nanoparticles) are embedded in a non-conductive matrix (polystyrene film), like for polypyrrole:polystyrene sulfonate (PPy:PSS), and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). I controlled the nanoscale morphology of the model by varying the distribution of gold nanoparticles in the polystyrene films. I studied the influence of different morphologies on the surface potential measured by KPFM and on the conductivity measured by SCTMM. By the knowledge I gained from analyzing the data of the model system I was able to predict the nanostructure of a homemade PPy:PSS blend.rnThe morphologic, electric, and dielectric properties of water based conjugated polymer blends, e.g. PPy:PSS or PEDOT:PSS, are known to be influenced by their water content. These properties also influence the macroscopic performance when the polymer blends are employed in a device. In the second part I therefore present an in situ humidity-dependence study on PPy:PSS films spin-coated and drop-coated on hydrophobic highly ordered pyrolytic graphite substrates by KPFM. I additionally used a particular KPFM mode that detects the second harmonic electrostatic force. With this, I obtained images of dielectric constants of samples. Upon increasing relative humidity, the surface morphology and composition of the films changed. I also observed that relative humidity affected thermally unannealed and annealed PPy:PSS films differently. rnThe conductivity of a conjugated polymer may change once it is embedded in a non-conductive matrix, like for PPy embedded in PSS. To measure the conductivity of single conjugated polymer particles, in the third part, I present a direct method based on microscopic four-point probes. I started with metal core-shell and metal bulk particles as models, and measured their conductivities. The study could be extended to measure conductivity of single PPy particles (core-shell and bulk) with a diameter of a few micrometers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

ABSTRACT: In this work, proton conducting copolymers, polymer blends and composites containing phosphonic acid groups have been prepared. Proton conduction mechanisms in these materials are discussed respectively in both, the anhydrous and humidified state. Atom transfer radical copolymerization (ATRCP) of diisopropyl-p-vinylbenzyl phosphonate (DIPVBP) and 4-vinyl pyridine (4VP) is studied for the first time in this work. The kinetic parameters are obtained by using the 1H-NMR online technique. Proton conduction in poly(vinylbenzyl phosphonic acid) (PVBPA) homopolymer and its statistical copolymers with 4-vinyl pyridine (poly(VBPA-stat-4VP)s) are comprehensively studied in both, the “dry” and “wet” state. Effects of temperature, water content and polymer composition on proton conductivities are studied and proton transport mechanisms under various conditions are discussed. The proton conductivity of the polymers is in the range of 10-6-10-8 S/cm in nominally dry state at 150 oC. However, proton conductivity of the polymers increases rapidly with water content in the polymers which can reach 10-2 S/cm at the water uptake of 25% in the polymers. The highest proton conductivity obtained from the polymers can even reach 0.3 S/cm which was measured at 85oC with 80% relative humidity in the measuring atmosphere. Poly(4-vinyl pyridine) was grafted from the surface of SiO2 nanoparticles using ATRP in this work for the first time. Following this approach, silica nanoparticles with a shell of polymeric layer are used as basic particles in a polymeric acidic matrix. The proton conductivities of the composites are studied under both, humidified and dry conditions. In dry state, the conductivity of the composites is in the range of 10-10~10-4 S/cm at 150 oC. While in humid state, the composites show much higher proton conductivity. The highest proton conductivity obtained with the composites is 0.5 S/cm measured at 85oC with 80% relative humidity in the measuring atmosphere. The miscibility of poly (vinyl phosphonic acid) and PEO is studied for the first time in this work and a phase diagram is plotted based on a DSC study and optical microscopy. With this knowledge, homogeneous PVPA/PEO mixtures are prepared as proton-conducting polymer blends. The mobility of phosphonic acid groups and PEO in the blends is determined by 1H-MAS-NMR in temperature dependent measurements. The effect of composition and the role of PEO on proton conduction are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die vorliegende Arbeit beschäftigt sich mit dem Phasenverhalten von Polyethylen (PE) in nicht-reaktiven und in reaktiven Systemen. Von drei eng verteilten Polyethylenen (Mw = 6,4, 82 bzw. 380 kg/mol) in n-Hexan sowie für das System 2,2-Dimethylbutan / PE 82 wurde die Entmischung in Abhängigkeit von der Zusammensetzung, dem Druck und der Temperatur experimentell bestimmt. Die Modellierung der Trübungskurven erfolgte nach der Theorie von Sanchez und Lacombe. Dieser Ansatz beschreibt die Ergebnisse qualitativ und kann in einem engen Temperatur- und Druckbereich für gegebenes Molekulargewicht die kritische Temperatur und den kritischen Druck quantitativ vorhersagen. Durch Extrapolation der kritischen Temperatur der verschiedenen Lösungen von PE in n-Hexan auf unendliches Molekulargewicht nach Shultz-Flory wurde im Druckbereich von 20 bis 100 bar und im Temperaturbereich von 130 bis 200 °C eine Grenzlinie bestimmt. Diese Linie trennt unabhängig vom Molekulargewicht des Polymers und der Zusammensetzung der Mischung das Zweiphasengebiet vom homogenen Bereich. Im Fall des Mischlösungsmittels n-Hexan / 2,2-Dimethylbutan wurde für eine annähernd kritische Polymerkonzentration die Abhängigkeit der Entmischungsbedingungen von der Zusammensetzung untersucht. Durch einfache Erweiterung der Sanchez-Lacombe-Theorie und Einführen eines Fitparameters konnte das ternäre System beschrieben werden. An einer breit verteilten PE-Probe wurden Experimente zur Fraktionierung von PE in n-Hexan durchgeführt. Die Analyse der in den koexistenten Phasen enthaltenen Polymere lieferte Informationen über die Konzentration und die Molekulargewichtsverteilung des PE in diesen Phasen sowie die kritische Zusammensetzung der Mischung. Von verschiedenen PE-Lösungen (Mw = 0,5 kg/mol) wurde die polymerisationsinduzierte Phasenseparation in Isobornylmethacrylat mit und ohne Vernetzer untersucht. Mit 15 Gew.-% PE und in Abwesenheit von Vernetzer findet die Entmischung erst bei hohen Umsätzen statt. Die Charakterisierung der resultierenden Proben zeigte, dass sich etwas mehr als 5 Gew.-% PE im Polyisobornylmethacrylat lösen. Die Glasübergangstemperaturen der Polymermischungen steigen mit steigender Vernetzer- und sinkender Polyethylenkonzentration. Bei Proben mit 15 Gew.-% PE zeigte sich folgendes: 5 Gew.-% Vernetzer führen zu großen PE-Bereichen (150 - 200 nm) in der Matrix und der Kristallinitätsgrad ist gering. Bei der Polymermischung mit 10 Gew.-% Vernetzer bilden sich sehr kleine Polyethylenkristalle (< 80 nm) und der Kristallinitätsgrad ist hoch. Ohne Vernetzer hängt der Kristallinitätsgrad - wie bei reinem PE - von der Abkühlrate ab, mit Vernetzer ist er von ihr unabhängig.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conjugated polymers have attracted tremendous academical and industrial research interest over the past decades due to the appealing advantages that organic / polymeric materials offer for electronic applications and devices such as organic light emitting diodes (OLED), organic field effect transistors (OFET), organic solar cells (OSC), photodiodes and plastic lasers. The optimization of organic materials for applications in optoelectronic devices requires detailed knowledge of their photophysical properties, for instance energy levels of excited singlet and triplet states, excited state decay mechanisms and charge carrier mobilities. In the present work a variety of different conjugated (co)polymers, mainly polyspirobifluorene- and polyfluorene-type materials, was investigated using time-resolved photoluminescence spectroscopy in the picosecond to second time domain to study their elementary photophysical properties and to get a deeper insight into structure-property relationships. The experiments cover fluorescence spectroscopy using Streak Camera techniques as well as time-delayed gated detection techniques for the investigation of delayed fluorescence and phosphorescence. All measurements were performed on the solid state, i.e. thin polymer films and on diluted solutions. Starting from the elementary photophysical properties of conjugated polymers the experiments were extended to studies of singlet and triplet energy transfer processes in polymer blends, polymer-triplet emitter blends and copolymers. The phenomenon of photonenergy upconversion was investigated in blue light-emitting polymer matrices doped with metallated porphyrin derivatives supposing an bimolecular annihilation upconversion mechanism which could be experimentally verified on a series of copolymers. This mechanism allows for more efficient photonenergy upconversion than previously reported for polyfluorene derivatives. In addition to the above described spectroscopical experiments, amplified spontaneous emission (ASE) in thin film polymer waveguides was studied employing a fully-arylated poly(indenofluorene) as the gain medium. It was found that the material exhibits a very low threshold value for amplification of blue light combined with an excellent oxidative stability, which makes it interesting as active material for organic solid state lasers. Apart from spectroscopical experiments, transient photocurrent measurements on conjugated polymers were performed as well to elucidate the charge carrier mobility in the solid state, which is an important material parameter for device applications. A modified time-of-flight (TOF) technique using a charge carrier generation layer allowed to study hole transport in a series of spirobifluorene copolymers to unravel the structure-mobility relationship by comparison with the homopolymer. Not only the charge carrier mobility could be determined for the series of polymers but also field- and temperature-dependent measurements analyzed in the framework of the Gaussian disorder model showed that results coincide very well with the predictions of the model. Thus, the validity of the disorder concept for charge carrier transport in amorphous glassy materials could be verified for the investigated series of copolymers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Functional materials have great importance due to their many important applications. The characterization of supramolecular architectures which are held together by non-covalent interactions is of most importance to understand their properties. Solid-state NMR methods have recently been proven to be able to unravel such structure-property relations with the help of fast magic-angle spinning and advanced pulse sequences. The aim of the current work is to understand the structure and dynamics of functional supramolecular materials which are potentially important for fuel-cell (proton conducting membrane materials) and solar-cell or plastic-electronic applications (photo-reactive aromatic materials). In particular, hydrogen-bonding networks, local proton mobility, molecular packing arrangements, and local dynamics will be studied by the use of advanced solid-state NMR methods. The first class of materials studied in this work is proton conducting polymers which also form hydrogen-bonding network. Different materials, which are prepared for high 1H conduction by different approaches are studied: PAA-P4VP, PVPA-ABPBI, Tz5Si, and Triazole-functional systems. The materials are examples of the following major groups; - Homopolymers with specific functional groups (Triazole functional polysiloxanes). - Acid-base polymer blends approach (PAA-P4VP, PVPA-ABPBI). - Acid-base copolymer approach (Triazole-PVPA). - Acid doped polymers (Triazole functional polymer doped with H3PO4). Perylenebisimide (PBI) derivatives, a second type of important functional supramolecular materials with potent applications in plastic electronics, were also investigated by means of solid-state NMR. The preparation of conducting nanoscopic fibers based on the self-assembling functional units is an appealing aim as they may be incorporated in molecular electronic devices. In this category, perylene derivatives have attracted great attention due to their high charge carrier mobility. A detailed knowledge about their supramolecular structure and molecular dynamics is crucial for the understanding of their electronic properties. The aim is to understand the structure, dynamics and packing arrangements which lead to high electron conductivity in PBI derivatives.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Die vorliegende Arbeit behandelt die Anwendung der Rasterkraftmikroskopie auf die Untersuchung mesostrukturierter Materialien. Mesostrukturierte Materialien setzen sich aus einzelnen mesoskopen Bausteinen zusammen. Diese Untereinheiten bestimmen im Wesentlichen ihr charakteristisches Verhalten auf äußere mechanische oder elektrische Reize, weshalb diesen Materialien eine besondere Rolle in der Natur sowie im täglichen Leben zukommt. Ein genaues Verständnis der Selbstorganisation dieser Materialien und der Wechselwirkung der einzelnen Bausteine untereinander ist daher von essentieller Bedeutung zur Entwicklung neuer Synthesestrategien sowie zur Optimierung ihrer Materialeigenschaften. Die Charakterisierung dieser mesostrukturierten Materialien erfolgt üblicherweise mittels makroskopischer Analysemethoden wie der dielektrischen Breitbandspektroskopie, Thermogravimetrie sowie in Biegungsexperimenten. In dieser Arbeit wird gezeigt, wie sich diese Analysemethoden mit der Rasterkraftmikroskopie verbinden lassen, um mesostrukturierte Materialien zu untersuchen. Die Rasterkraftmikroskopie bietet die Möglichkeit, die Oberfläche eines Materials abzubilden und zusätzlich dazu seine quantitativen Eigenschaften, wie die mechanische Biegefestigkeit oder die dielektrische Relaxation, zu bestimmen. Die Übertragung makroskopischer Analyseverfahren auf den Nano- bzw. Mikrometermaßstab mittels der Rasterkraftmikroskopie erlaubt die Charakterisierung von räumlich sehr begrenzten Proben bzw. von Proben, die nur in einer sehr kleinen Menge (&lt;10 mg) vorliegen. Darüberhinaus umfasst das Auflösungsvermögen eines Rasterkraftmikroskops, welche durch die Größe seines Federbalkens (50 µm) sowie seines Spitzenradius (5 nm) definiert ist, genau den Längenskalenbereich, der einzelne Atome mit der makroskopischen Welt verbindet, nämlich die Mesoskala. In dieser Arbeit werden Polymerfilme, kolloidale Nanofasern sowie Biomineralien ausführlicher untersucht.rnIm ersten Projekt werden mittels Rasterkraftmikroskopie dielektrische Spektren von mischbaren Polymerfilmen aufgenommen und mit ihrer lokalen Oberflächenstruktur korreliert. Im zweiten Projekt wird die Rasterkraftmikroskopie eingesetzt, um Biegeexperimente an kolloidalen Nanofasern durchzuführen und so ihre Brucheigenschaften genauer zu untersuchen. Im letzten Projekt findet diese Methode Anwendung bei der Charakterisierung der Biegeeigenschaften von Biomineralien. Des Weiteren erfolgt eine Analyse der organischen Zusammensetzung dieser Biomineralien. Alle diese Projekte demonstrieren die vielseitige Einsetzbarkeit der Rasterkraftmikroskopie zur Charakterisierung mesostrukturierter Materialien. Die Korrelation ihrer mechanischen und dielektrischen Eigenschaften mit ihrer topographischen Beschaffenheit erlaubt ein tieferes Verständnis der mesoskopischen Materialien und ihres Verhaltens auf die Einwirkung äußerer Stimuli.rn

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding and controlling the mechanism of the diffusion of small molecules, macromolecules and nanoparticles in heterogeneous environments is of paramount fundamental and technological importance. The aim of the thesis is to show, how by studying the tracer diffusion in complex systems, one can obtain information about the tracer itself, and the system where the tracer is diffusing. rnIn the first part of my thesis I will introduce the Fluorescence Correlation Spectroscopy (FCS) which is a powerful tool to investigate the diffusion of fluorescent species in various environments. By using the main advantage of FCS namely the very small probing volume (<1µm3) I was able to track the kinetics of phase separation in polymer blends at late stages by looking on the molecular tracer diffusion in individual domains of the heterogeneous structure of the blend. The phase separation process at intermediate stages was monitored with laser scanning confocal microscopy (LSCM) in real time providing images of droplet coalescence and growth. rnIn a further project described in my thesis I will show that even when the length scale of the heterogeneities becomes smaller than the FCS probing volume one can still obtain important microscopic information by studying small tracer diffusion. To do so, I will introduce a system of star shaped polymer solutions and will demonstrate that the mobility of small molecular tracers on microscopic level is nearly not affected by the transition of the polymer system to a “glassy” macroscopic state. rnIn the last part of the thesis I will introduce and describe a new stimuli responsive system which I have developed, that combines two levels of nanoporosity. The system is based on poly-N-isopropylacrylamide (PNIPAM) and silica inverse opals (iOpals), and allows controlling the diffusion of tracer molecules. rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we investigated the evaporation of sessile microdroplets on different solid substrates. Three major aspects were studied: the influence of surface hydrophilicity and heterogeneity on the evaporation dynamics for an insoluble solid substrate, the influence of external process parameters and intrinsic material properties on microstructuring of soluble polymer substrates and the influence of an increased area to volume ratio in a microfluidic capillary, when evaporation is hindered. In the first part, the evaporation dynamics of pure sessile water drops on smooth self-assembled monolayers (SAMs) of thiols or disulfides on gold on mica was studied. With increasing surface hydrophilicity the drop stayed pinned longer. Thus, the total evaporation time of a given initial drop volume was shorter, since the drop surface, through which the evaporation occurs, stays longer large. Usually, for a single drop the volume decreased linearly with t1.5, t being the evaporation time, for a diffusion-controlled evaporation process. However, when we measured the total evaporation time, ttot, for multiple droplets with different initial volumes, V0, we found a scaling of the form V0 = attotb. The more hydrophilic the substrate was, the more showed the scaling exponent a tendency to an increased value up to 1.6. This can be attributed to an increasing evaporation rate through a thin water layer in the vicinity of the drop. Under the assumption of a constant temperature at the substrate surface a cooling of the droplet and thus a decreased evaporation rate could be excluded as a reason for the different scaling exponent by simulations performed by F. Schönfeld at the IMM, Mainz. In contrast, for a hairy surface, made of dialkyldisulfide SAMs with different chain lengths and a 1:1 mixture of hydrophilic and hydrophobic end groups (hydroxy versus methyl group), the scaling exponent was found to be ~ 1.4. It increased to ~ 1.5 with increasing hydrophilicity. A reason for this observation can only be speculated: in the case of longer hydrophobic alkyl chains the formation of an air layer between substrate and surface might be favorable. Thus, the heat transport to the substrate might be reduced, leading to a stronger cooling and thus decreased evaporation rate. In the second part, the microstructuring of polystyrene surfaces by drops of toluene, a good solvent, was investigated. For this a novel deposition technique was developed, with which the drop can be deposited with a syringe. The polymer substrate is lying on a motorized table, which picks up the pendant drop by an upward motion until a liquid bridge is formed. A consecutive downward motion of the table after a variable delay, i.e. the contact time between drop and polymer, leads to the deposition of the droplet, which can evaporate. The resulting microstructure is investigated in dependence of the processes parameters, i.e. the approach and the retraction speed of the substrate and the delay between them, and in dependence of the intrinsic material properties, i.e. the molar mass and the type of the polymer/solvent system. The principal equivalence with the microstructuring by the ink-jet technique was demonstrated. For a high approach and retraction speed of 9 mm/s and no delay between them, a concave microtopology was observed. In agreement with the literature, this can be explained by a flow of solvent and the dissolved polymer to the rim of the pinned droplet, where polymer is accumulated. This effect is analogue to the well-known formation of ring-like stains after the evaporation of coffee drops (coffee-stain effect). With decreasing retraction speed down to 10 µm/s the resulting surface topology changes from concave to convex. This can be explained with the increasing dissolution of polymer into the solvent drop prior to the evaporation. If the polymer concentration is high enough, gelation occurs instead of a flow to the rim and the shape of the convex droplet is received. With increasing delay time from below 0 ms to 1s the depth of the concave microwells decreases from 4.6 µm to 3.2 µm. However, a convex surface topology could not be obtained, since for longer delay times the polymer sticks to the tip of the syringe. Thus, by changing the delay time a fine-tuning of the concave structure is accomplished, while by changing the retraction speed a principal change of the microtopolgy can be achieved. We attribute this to an additional flow inside the liquid bridge, which enhanced polymer dissolution. Even if the pendant drop is evaporating about 30 µm above the polymer surface without any contact (non-contact mode), concave structures were observed. Rim heights as high as 33 µm could be generated for exposure times of 20 min. The concave structure exclusively lay above the flat polymer surface outside the structure even after drying. This shows that toluene is taken up permanently. The increasing rim height, rh, with increasing exposure time to the solvent vapor obeys a diffusion law of rh = rh0  tn, with n in the range of 0.46 ~ 0.65. This hints at a non-Fickian swelling process. A detailed analysis showed that the rim height of the concave structure is modulated, unlike for the drop deposition. This is due to the local stress relaxation, which was initiated by the increasing toluene concentration in the extruded polymer surface. By altering the intrinsic material parameters i.e. the polymer molar mass and the polymer/solvent combination, several types of microstructures could be formed. With increasing molar mass from 20.9 kDa to 1.44 MDa the resulting microstructure changed from convex, to a structure with a dimple in the center, to concave, to finally an irregular structure. This observation can be explained if one assumes that the microstructuring is dominated by two opposing effects, a decreasing solubility with increasing polymer molar mass, but an increasing surface tension gradient leading to instabilities of Marangoni-type. Thus, a polymer with a low molar mass close or below the entanglement limit is subject to a high dissolution rate, which leads to fast gelation compared to the evaporation rate. This way a coffee-rim like effect is eliminated early and a convex structure results. For high molar masses the low dissolution rate and the low polymer diffusion might lead to increased surface tension gradients and a typical local pile-up of polymer is found. For intermediate polymer masses around 200 kDa, the dissolution and evaporation rate are comparable and the typical concave microtopology is found. This interpretation was supported by a quantitative estimation of the diffusion coefficient and the evaporation rate. For a different polymer/solvent system, polyethylmethacrylate (PEMA)/ethylacetate (EA), exclusively concave structures were found. Following the statements above this can be interpreted with a lower dissolution rate. At low molar masses the concentration of PEMA in EA most likely never reaches the gelation point. Thus, a concave instead of a convex structure occurs. At the end of this section, the optically properties of such microstructures for a potential application as microlenses are studied with laser scanning confocal microscopy. In the third part, the droplet was confined into a glass microcapillary to avoid evaporation. Since here, due to an increased area to volume ratio, the surface properties of the liquid and the solid walls became important, the influence of the surface hydrophilicity of the wall on the interfacial tension between two immiscible liquid slugs was investigated. For this a novel method for measuring the interfacial tension between the two liquids within the capillary was developed. This technique was demonstrated by measuring the interfacial tensions between slugs of pure water and standard solvents. For toluene, n-hexane and chloroform 36.2, 50.9 and 34.2 mN/m were measured at 20°C, which is in a good agreement with data from the literature. For a slug of hexane in contact with a slug of pure water containing ethanol in a concentration range between 0 and 70 (v/v %), a difference of up to 6 mN/m was found, when compared to commercial ring tensiometry. This discrepancy is still under debate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Imidazolium types of ionic liquids were immobilized by tethering it to acrylate backbone. These imidazolium salt containing acrylate monomers were polymerize at 70oC by free radical polymerization to give polymers poly(AcIm-n) with n being the side chain lenght. The chemical structure of the polymer electrolytes obtained by the described synthetic routes was investigated by NMR-spectroscopy. The polymers were doped with various amounts of H3PO4 and LiN(SO2CF3)2, to obtain poly(AcIm-n) x H3PO4 and poly(AcIm-2-Li) x LiN(SO2CF3)2. The TG curves show that the polymer electrolytes are thermally stable up to about 200◦C. DSC results indicates the softening effect of the length of the spacers (n) as well as phosphoric acid. The proton conductivity of the samples increase with x and reaches to 10-2 Scm-1 at 120oC for both poly(AcIm-2)2H3PO4 and poly(AcIm-6)2H3PO4. It was observed that the lithium ion conductivity of the poly(AcIm-2-Li) x LiN(SO2CF3)2 increases with blends (x) up to certain composition and then leveled off independently from blend content. The conductivity reaches to about 10-5 S cm-1 at 30oC and 10-3 at 100oC for poly(AcIm-2-Li) x LiN(SO2CF3)2 where x is 10. The phosphate and phosphoric acid functionality in the resulting polymers, poly(AcIm-n) x H3PO4, undergoes condensation leading to the formation of cross-linked materials at elevated temperature which may improve the mechanical properties to be used as membrane materials in fuel cells. High resolution nuclear magnetic resonance (NMR) spectroscopy was used to obtain information about hydrogen bonding in solids. The low Tg enhances molecular mobility and this leads to better resolved resonances in both the backbone region and side chain region. The mobile and immobile protons can be distinguished by comparing 1H MAS and 1H-DQF NMR spectra. The interaction of the protons which may contribute to the conductivity is observed from the 2D double quantum correlation (DQC) spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with the investigation of charge generation and recombination processes in three different polymer:fullerene photovoltaic blends by means of ultrafast time-resolved optical spectroscopy. The first donor polymer, namely poly[N-11"-henicosanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT), is a mid-bandgap polymer, the other two materials are the low-bandgap donor polymers poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole) (PCPDTBT) and poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT). Despite their broader absorption, the low-bandgap polymers do not show enhanced photovoltaic efficiencies compared to the mid-bandgap system.rnrnTransient absorption spectroscopy revealed that energetic disorder plays an important role in the photophysics of PCDTBT, and that in a blend with PCBM geminate losses are small. The photophysics of the low-bandgap system PCPDTBT were strongly altered by adding a high boiling point cosolvent to the polymer:fullerene blend due to a partial demixing of the materials. We observed an increase in device performance together with a reduction of geminate recombination upon addition of the cosolvent. By applying model-free multi-variate curve resolution to the spectroscopic data, we found that fast non-geminate recombination due to polymer triplet state formation is a limiting loss channel in the low-bandgap material system PCPDTBT, whereas in PSBTBT triplet formation has a smaller impact on device performance, and thus higher efficiencies are obtained.rn