2 resultados para Hyperbolic
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In der vorliegenden Arbeit wurden AFM-Kraft-Abstands-Kurven benutzt, um die mechanischen Eigenschaften dünner Polymerfilme verschiedener Schichtdicken (2 - 400 nm) auf einem sehr viel steiferen Substrat (mechanische Doppelschichten) zu untersuchen. Die mechanischen Eigenschaften einer solchen Probe setzen sich aus den mechanischen Eigenschaften der Bestandteile, d.h. Polymer und Substrat, zusammen. Der Beitrag der Bestandteile hängt von der Schichtdicke und von der Auflagekraft ab. Es wurden existierende Modelle für die Auswertung von an Doppelschichten gemessenen Deformationskurven überprüft und festgestellt, dass kein Modell befriedigende Ergebnisse erzielt. Dies zeigte die Notwendigkeit einer neuen semiempirischen Theorie zur Beschreibung der Deformationskurven von mechanischen Doppelschichten. In dieser Arbeit wird der hyperbolische Fit zu diesem Zweck eingeführt. Die Validität des hyperbolischen Fit wurde anhand von drei Experimenten gezeigt. Alle experimentellen Kurven konnten sehr gut durch den hyperbolischen Fit beschrieben werden. Die Elastizitätsmoduln der Bestandteile konnten in Übereinstimmung mit den Literaturwerten berechnet werden. Die Schichtdicken der Proben konnten in allen Fällen mit großer Exaktheit bestimmt werden. Es wurde zudem die Möglichkeit der Auswertung einzelner Kraft-Abstands-Kurven untersucht. Damit konnte die Schichtdicke der untersuchten Doppelschichten ortsaufgelöst im Submikrometerbereich bestimmt werden und ein verstecktes Substrat detektiert werden. Die Adhäsion an der Grenzfläche Polymer/Substrat hat einen fundamentalen Einfluss auf die mechanischen Eigenschaften der Doppelschicht, der qualitativ im letzten Teil der Doktorarbeit gezeigt werden konnte.
Resumo:
Die Flachwassergleichungen (SWE) sind ein hyperbolisches System von Bilanzgleichungen, die adäquate Approximationen an groß-skalige Strömungen der Ozeane, Flüsse und der Atmosphäre liefern. Dabei werden Masse und Impuls erhalten. Wir unterscheiden zwei charakteristische Geschwindigkeiten: die Advektionsgeschwindigkeit, d.h. die Geschwindigkeit des Massentransports, und die Geschwindigkeit von Schwerewellen, d.h. die Geschwindigkeit der Oberflächenwellen, die Energie und Impuls tragen. Die Froude-Zahl ist eine Kennzahl und ist durch das Verhältnis der Referenzadvektionsgeschwindigkeit zu der Referenzgeschwindigkeit der Schwerewellen gegeben. Für die oben genannten Anwendungen ist sie typischerweise sehr klein, z.B. 0.01. Zeit-explizite Finite-Volume-Verfahren werden am öftersten zur numerischen Berechnung hyperbolischer Bilanzgleichungen benutzt. Daher muss die CFL-Stabilitätsbedingung eingehalten werden und das Zeitinkrement ist ungefähr proportional zu der Froude-Zahl. Deswegen entsteht bei kleinen Froude-Zahlen, etwa kleiner als 0.2, ein hoher Rechenaufwand. Ferner sind die numerischen Lösungen dissipativ. Es ist allgemein bekannt, dass die Lösungen der SWE gegen die Lösungen der Seegleichungen/ Froude-Zahl Null SWE für Froude-Zahl gegen Null konvergieren, falls adäquate Bedingungen erfüllt sind. In diesem Grenzwertprozess ändern die Gleichungen ihren Typ von hyperbolisch zu hyperbolisch.-elliptisch. Ferner kann bei kleinen Froude-Zahlen die Konvergenzordnung sinken oder das numerische Verfahren zusammenbrechen. Insbesondere wurde bei zeit-expliziten Verfahren falsches asymptotisches Verhalten (bzgl. der Froude-Zahl) beobachtet, das diese Effekte verursachen könnte.Ozeanographische und atmosphärische Strömungen sind typischerweise kleine Störungen eines unterliegenden Equilibriumzustandes. Wir möchten, dass numerische Verfahren für Bilanzgleichungen gewisse Equilibriumzustände exakt erhalten, sonst können künstliche Strömungen vom Verfahren erzeugt werden. Daher ist die Quelltermapproximation essentiell. Numerische Verfahren die Equilibriumzustände erhalten heißen ausbalanciert.rnrnIn der vorliegenden Arbeit spalten wir die SWE in einen steifen, linearen und einen nicht-steifen Teil, um die starke Einschränkung der Zeitschritte durch die CFL-Bedingung zu umgehen. Der steife Teil wird implizit und der nicht-steife explizit approximiert. Dazu verwenden wir IMEX (implicit-explicit) Runge-Kutta und IMEX Mehrschritt-Zeitdiskretisierungen. Die Raumdiskretisierung erfolgt mittels der Finite-Volumen-Methode. Der steife Teil wird mit Hilfe von finiter Differenzen oder au eine acht mehrdimensional Art und Weise approximniert. Zur mehrdimensionalen Approximation verwenden wir approximative Evolutionsoperatoren, die alle unendlich viele Informationsausbreitungsrichtungen berücksichtigen. Die expliziten Terme werden mit gewöhnlichen numerischen Flüssen approximiert. Daher erhalten wir eine Stabilitätsbedingung analog zu einer rein advektiven Strömung, d.h. das Zeitinkrement vergrößert um den Faktor Kehrwert der Froude-Zahl. Die in dieser Arbeit hergeleiteten Verfahren sind asymptotisch erhaltend und ausbalanciert. Die asymptotischer Erhaltung stellt sicher, dass numerische Lösung das "korrekte" asymptotische Verhalten bezüglich kleiner Froude-Zahlen besitzt. Wir präsentieren Verfahren erster und zweiter Ordnung. Numerische Resultate bestätigen die Konvergenzordnung, so wie Stabilität, Ausbalanciertheit und die asymptotische Erhaltung. Insbesondere beobachten wir bei machen Verfahren, dass die Konvergenzordnung fast unabhängig von der Froude-Zahl ist.