7 resultados para Human Genes
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
In der vorliegenden Arbeit wurde das Imprinting von Genen der Chromosomenregion 11p15.5 des Menschen und des orthologen murinen Abschnitts 7F5 untersucht. Bei der Analyse der humanen Gene H19, IGF2 und KCNQ1OT1 stand deren Regulation durch differentiell methylierte Regionen (DMR) und die Identifizierung von Methylierungsfehlern bei Patienten mit Verdacht auf Beckwith-Wiedemann Syndrom (BWS) im Vordergrund. Hierzu wurden unmethylierte Cytosinnukleotide durch Bisulfitbehandlung in Uracilnukleotide umgewandelt und PCR-amplifizierte DNA-Fragmente sequenziert. Die elterliche Herkunft der Allele wurde mit Hilfe von Einzelnukleotidpolymorphismen (SNP) bestimmt. Während in der H19-Promotorregion in Lymphozyten eine nur tendenziell allelspezifische Methylierung festgestellt werden konnte, wurde im B1-Repeat der H19/IGF2-Region in allen Kontroll- und 20 Patienten-DNAs eine spezifische Methylierung des väterlichen Allels nachgewiesen. Vier BWS-DNAs zeigten hingegen eine nahezu vollständige Hypomethylierung. In der zwe
Resumo:
Natürliche Killerzell-Rezeptoren, die MHC-Klasse-I-Moleküle binden, sind im Leukozyten Rezeptor Komplex (LRC) und im Natürlichen Killer Komplex (NKC) kodiert. Die Bindung klassischer MHC-Klasse-I-Moleküle erfolgt im Menschen durch die im LRC kodierten polymorphen Killerzell-Immunglobulin-ähnlichen Rezeptoren (KIR) und in Nagetieren durch die im NKC kodierten polymorphen C-Typ Lektin-ähnlichen Ly49-Rezeptoren. Die ebenfalls im NKC kodierten C-Typ Lektin-ähnlichen CD94/NKG2-Rezeptoren sowie der NKG2D-Rezeptor sind sowohl im Menschen als auch in Nagetieren konserviert und wenig polymorph. Im Rahmen dieser Arbeit wurde das CD94-Ly49L-Intervall der NKC-Region in einem Neuweltaffen, dem Weißbüschelaffen (Callithrix jacchus), sowie einem Feuchtnasenaffen, dem Grauen Mausmaki (Microcebus murinus), über Screening von BAC-Banken und Sequenzanalyse von BAC-Contigs untersucht. Das CD94-Ly49L-Intervall im Weißbüschelaffen hat eine Länge von 171 kb und weist orthologe Gene zu den humanen NKC-Genen auf. Eine Ausnahme bildet das Gen NKG2CE, welches äquidistant zu den humanen Genen NKG2C und NKG2E ist. NKG2F und Ly49L sind Pseudogene. Expressionsanalysen der NKC-Gene in neun Weißbüschelaffen-Individuen lieferten einen mäßigen Grad an allelischen Polymorphismen. Alternative Spleißprodukte wurden für CD94, NKG2D und NKG2A identifiziert. Für NKG2A wurden verschiedene Transkripte mit potentiell unterschiedlichen Translationsstartpunkten gefunden. Im Grauen Mausmaki beträgt die Länge des CD94-Ly49L-Intervalls 489 kb. CD94 und die NKG2-Gene sind vervielfacht und wesentlich polymorpher als im Menschen und im Weißbüschelaffen. Expressionsanalysen der NKC-Gene wurden im Grauen Mausmaki und einem weiteren madagassischen Lemuren, dem Schwarzweißen Vari (Varecia variegata), durchgeführt und zeigten, dass CD94 und die NKG2-Gene im Vari ebenfalls vervielfacht sind. Die NKG2-Moleküle der Lemuren weisen unterschiedliche Kombinationen an aktivierenden und inhibierenden Signalmotiven auf und üben somit möglicherweise diverse Funktionen aus. Ly49L stellt in den Lemuren einen potentiell funktionellen inhibierenden Rezeptor dar und NKG2D besitzt im Vergleich zum humanen NKG2D-Protein eine verkürzte Zytoplasmaregion. Alternative Spleißprodukte der NKC-Gene existieren auch in den Lemuren. Darüber hinaus wurden mehrere CD94-Gene in einem weiteren Feuchtnasenaffen, dem Potto (Perodicticus potto) und einem Trockennasenaffen, dem Philippinen-Koboldmaki (Tarsius syrichta), nachgewiesen. Ein Alu-Element, welches ausschließlich in Intron 4 der CD94-Sequenzen des Philippinen-Koboldmakis auftritt, deutet darauf hin, dass sich CD94 in der Linie der Koboldmakis und in der Linie der Feuchtnasenaffen unabhängig voneinander vervielfacht hat. Die vervielfachten, polymorphen CD94/NKG2-Rezeptoren der niederen Primaten stellen möglicherweise das funktionelle Äquivalent zu den polymorphen KIR der höheren Primaten und den polymorphen Ly49-Rezeptoren der Nagetiere dar.
Resumo:
Welche genetische Unterschiede machen uns verschieden von unseren nächsten Verwandten, den Schimpansen, und andererseits so ähnlich zu den Schimpansen? Was wir untersuchen und auch verstehen wollen, ist die komplexe Beziehung zwischen den multiplen genetischen und epigenetischen Unterschieden, deren Interaktion mit diversen Umwelt- und Kulturfaktoren in den beobachteten phänotypischen Unterschieden resultieren. Um aufzuklären, ob chromosomale Rearrangements zur Divergenz zwischen Mensch und Schimpanse beigetragen haben und welche selektiven Kräfte ihre Evolution geprägt haben, habe ich die kodierenden Sequenzen von 2 Mb umfassenden, die perizentrischen Inversionsbruchpunkte flankierenden Regionen auf den Chromosomen 1, 4, 5, 9, 12, 17 und 18 untersucht. Als Kontrolle dienten dabei 4 Mb umfassende kollineare Regionen auf den rearrangierten Chromosomen, welche mindestens 10 Mb von den Bruchpunktregionen entfernt lagen. Dabei konnte ich in den Bruchpunkten flankierenden Regionen im Vergleich zu den Kontrollregionen keine höhere Proteinevolutionsrate feststellen. Meine Ergebnisse unterstützen nicht die chromosomale Speziationshypothese für Mensch und Schimpanse, da der Anteil der positiv selektierten Gene (5,1% in den Bruchpunkten flankierenden Regionen und 7% in den Kontrollregionen) in beiden Regionen ähnlich war. Durch den Vergleich der Anzahl der positiv und negativ selektierten Gene per Chromosom konnte ich feststellen, dass Chromosom 9 die meisten und Chromosom 5 die wenigsten positiv selektierten Gene in den Bruchpunkt flankierenden Regionen und Kontrollregionen enthalten. Die Anzahl der negativ selektierten Gene (68) war dabei viel höher als die Anzahl der positiv selektierten Gene (17). Eine bioinformatische Analyse von publizierten Microarray-Expressionsdaten (Affymetrix Chip U95 und U133v2) ergab 31 Gene, die zwischen Mensch und Schimpanse differentiell exprimiert sind. Durch Untersuchung des dN/dS-Verhältnisses dieser 31 Gene konnte ich 7 Gene als negativ selektiert und nur 1 Gen als positiv selektiert identifizieren. Dieser Befund steht im Einklang mit dem Konzept, dass Genexpressionslevel unter stabilisierender Selektion evolvieren. Die meisten positiv selektierten Gene spielen überdies eine Rolle bei der Fortpflanzung. Viele dieser Speziesunterschiede resultieren eher aus Änderungen in der Genregulation als aus strukturellen Änderungen der Genprodukte. Man nimmt an, dass die meisten Unterschiede in der Genregulation sich auf transkriptioneller Ebene manifestieren. Im Rahmen dieser Arbeit wurden die Unterschiede in der DNA-Methylierung zwischen Mensch und Schimpanse untersucht. Dazu wurden die Methylierungsmuster der Promotor-CpG-Inseln von 12 Genen im Cortex von Menschen und Schimpansen mittels klassischer Bisulfit-Sequenzierung und Bisulfit-Pyrosequenzierung analysiert. Die Kandidatengene wurden wegen ihrer differentiellen Expressionsmuster zwischen Mensch und Schimpanse sowie wegen Ihrer Assoziation mit menschlichen Krankheiten oder dem genomischen Imprinting ausgewählt. Mit Ausnahme einiger individueller Positionen zeigte die Mehrzahl der analysierten Gene keine hohe intra- oder interspezifische Variation der DNA-Methylierung zwischen den beiden Spezies. Nur bei einem Gen, CCRK, waren deutliche intraspezifische und interspezifische Unterschiede im Grad der DNA-Methylierung festzustellen. Die differentiell methylierten CpG-Positionen lagen innerhalb eines repetitiven Alu-Sg1-Elements. Die Untersuchung des CCRK-Gens liefert eine umfassende Analyse der intra- und interspezifischen Variabilität der DNA-Methylierung einer Alu-Insertion in eine regulatorische Region. Die beobachteten Speziesunterschiede deuten darauf hin, dass die Methylierungsmuster des CCRK-Gens wahrscheinlich in Adaption an spezifische Anforderungen zur Feinabstimmung der CCRK-Regulation unter positiver Selektion evolvieren. Der Promotor des CCRK-Gens ist anfällig für epigenetische Modifikationen durch DNA-Methylierung, welche zu komplexen Transkriptionsmustern führen können. Durch ihre genomische Mobilität, ihren hohen CpG-Anteil und ihren Einfluss auf die Genexpression sind Alu-Insertionen exzellente Kandidaten für die Förderung von Veränderungen während der Entwicklungsregulation von Primatengenen. Der Vergleich der intra- und interspezifischen Methylierung von spezifischen Alu-Insertionen in anderen Genen und Geweben stellt eine erfolgversprechende Strategie dar.
Resumo:
The comparative genomic sequence analysis of a region in human chromosome 11p15.3 and its homologous segment in mouse chromosome 7 between ST5 and LMO1 genes has been performed. 158,201 bases were sequenced in the mouse and compared with the syntenic region in human, partially available in the public databases. The analysed region exhibits the typical eukaryotic genomic structure and compared with the close neighbouring regions, strikingly reflexes the mosaic pattern distribution of (G+C) and repeats content despites its relative short size. Within this region the novel gene STK33 was discovered (Stk33 in the mouse), that codes for a serine/threonine kinase. The finding of this gene constitutes an excellent example of the strength of the comparative sequencing approach. Poor gene-predictions in the mouse genomic sequence were corrected and improved by the comparison with the unordered data from the human genomic sequence publicly available. Phylogenetical analysis suggests that STK33 belongs to the calcium/calmodulin-dependent protein kinases group and seems to be a novelty in the chordate lineage. The gene, as a whole, seems to evolve under purifying selection whereas some regions appear to be under strong positive selection. Both human and mouse versions of serine/threonine kinase 33, consists of seventeen exons highly conserved in the coding regions, particularly in those coding for the core protein kinase domain. Also the exon/intron structure in the coding regions of the gene is conserved between human and mouse. The existence and functionality of the gene is supported by the presence of entries in the EST databases and was in vivo fully confirmed by isolating specific transcripts from human uterus total RNA and from several mouse tissues. Strong evidence for alternative splicing was found, which may result in tissue-specific starting points of transcription and in some extent, different protein N-termini. RT-PCR and hybridisation experiments suggest that STK33/Stk33 is differentially expressed in a few tissues and in relative low levels. STK33 has been shown to be reproducibly down-regulated in tumor tissues, particularly in ovarian tumors. RNA in-situ hybridisation experiments using mouse Stk33-specific probes showed expression in dividing cells from lung and germinal epithelium and possibly also in macrophages from kidney and lungs. Preliminary experimentation with antibodies designed in this work, performed in parallel to the preparation of this manuscript, seems to confirm this expression pattern. The fact that the chromosomal region 11p15 in which STK33 is located may be associated with several human diseases including tumor development, suggest further investigation is necessary to establish the role of STK33 in human health.
Resumo:
372 osteochondrodysplasias and genetically determined dysostoses were reported in 2007 [Superti-Furga and Unger, 2007]. For 215 of these conditions, an association with one or more genes can be stated, while the molecular changes for the remaining syndromes remain illusive to date. Thus, the present dissertation aims at the identification of novel genes involved in processes regarding cartilage/ bone formation, growth, differentiation and homeostasis, which may serve as candidate genes for the above mentioned conditions. Two different approaches were undertaken. Firstly, a high throughput EST sequencing project from a human fetal cartilage library was performed to identify novel genes in early skeletal development (20th week of gestation until 2nd year of life) that could be investigated as potential candidate genes. 5000 EST sequences were generated and analyzed representing 1573 individual transcripts, corresponding to known (1400) and to novel, yet uncharacterized genes (173). About 7% of the proteins were already described in cartilage/ bone development or homeostasis, showing that the generated library is tissue specific. The remaining profile of this library was compared to previously published libraries from different time points (8th–12th, 18th–20th week and adult human cartilage) that also showed a similar distribution, reflecting the quality of the presented library analyzed. Furthermore, three potential candidate genes (LRRC59, CRELD2, ZNF577) were further investigated and their potential involvement in skeletogenesis was discussed. Secondly, a disease-orientated approach was undertaken to identify downstream targets of LMX1B, the gene causing Nail-Patella syndrome (NPS), and to investigate similar conditions. Like NPS, Genitopatellar syndrome (GPS) is characterized by aplasia or hypoplasia of the patella and renal anomalies. Therefore, six GPS patients were enrolled in a study to investigate the molecular changes responsible for this relatively rare disease. A 3.07 Mb deletion including LMX1B and NR5A1 (SF1) was found in one female patient that showed features of both NPS and GPS and investigations revealed a 46,XY karyotype and ovotestes indicating true hermaphroditism. The microdeletion was not seen in any of the five other patients with GPS features only, but a potential regulatory element between the two genes cannot be ruled out yet. Since Lmx1b is expressed in the dorsal limb bud and in podocytes, proteomic approaches and expression profiling were performed with murine material of the limbs and the kidneys to identify its downstream targets. After 2D-gel electrophoresis with protein extracts from E13.5 fore limb buds and newborn kidneys of Lmx1b wild type and knock-out mice and mass spectrometry analysis, only two proteins, agrin and carbonic anhydrase 2, remained of interest, but further analysis of the two genes did not show a transcriptional down regulation by Lmx1b. The focus was switched to expression profiles and RNA from newborn Lmx1b wild type and knock-out kidneys was compared by microarray analysis. Potential Lmx1b targets were almost impossible to study, because of the early death of Lmx1b deficient mice, when the glomeruli, containing podocytes, are still immature. Because Lmx1b is also expressed during limb development, RNA from wild type and knock-out Lmx1b E11.5 fore limb buds was investigated by microarray, revealing four potential Lmx1b downstream targets: neuropilin 2, single-stranded DNA binding protein 2, peroxisome proliferative activated receptor, gamma, co-activator 1 alpha, and short stature homeobox 2. Whole mount in situ hybridization strengthened a potential down regulation of neuropilin 2 by Lmx1b, but further investigations including in situ hybridization and protein-protein interaction studies will be needed.
Resumo:
Cancer is a multi-step process in which both the activation of oncogenes and the inactivation of tumor suppressor genes alter the normal cellular programs to a state of proliferation and growth. The regulation of a number of tumor suppressor genes and the mechanism underlying the tumor suppression have been intensively studied. Hugl-1 and Hugl-2, the human homologues of Drosophila lgl are shown to be down-regulated in a variety of cancers including breast, colon, lung and melanoma, but the mechanism responsible for loss of expression is not yet known. The regulation of gene expression is influenced by factors inducing or repressing transcription. The present study was focused on the identification and characterization of the active promoters of Hugl-1 and Hugl-2. Further, the regulation of the promoter and functional consequences of this regulation by specific transcription factors was analyzed. Experiments to delineate the function of the mouse homologue of Hugl-2, mgl2 using transgenic mice model were performed. This study shows that the active promoter for both Hugl-1 and Hugl-2 is located 1000bp upstream of transcription start sites. The study also provides first insight into the regulation of Hugl-2 by an important EMT transcriptional regulator, Snail. Direct binding of Snail to four E-boxes present in Hugl-2 promoter region results in repression of Hugl-2 expression. Hugl-1 and Hugl-2 plays pivotal role in establishment and maintenance of cell polarity in a diversity of cell types and organisms. Loss of epithelial cell polarity is a prerequisite for cancer progression and metastasis and is an important step in inducing EMT in cells. Regulation of Hugl-2 by Snail suggests one of the initial events towards loss of epithelial cell polarity during Snail-mediated EMT. Another important finding of this study is the induction of Hugl-2 expression can reverse the Snail-driven EMT. Inducing Hugl-2 in Snail expressing cells results in the re-expression of epithelial markers E-cadherin and Cytokeratin-18. Further, Hugl-2 also reduces the rate of tumor growth, cell migration and induces the epithelial phenotype in 3D culture model in cells expressing Snail. Studies to gain insight into the signaling pathways involved in reversing Snail-mediated EMT revealed that induction of Hugl-2 expression interferes with the activation of extracellular receptor kinase, Erk. Functional aspects of mammalian lgl in vivo was investigated by establishing mgl2 conditional knockout mice. Though disruption of mgl2 gene in hepatic tissues did not alter the growth and development, ubiquitous disruption of mgl2 gene causes embryonic lethality which is evident by the fact that no mgl2-/- mice were born.
Resumo:
For the successful integration of bone tissue engineering constructs into patients, an adequate supply with oxygen and nutrients is critical. Therefore, prevascularisation of bone tissue engineering constructs is desirable for bone formation, remodelling and regeneration. Co-culture systems, consisting of human endothelial cells and primary osteoblasts (pOB) as well as osteosarcoma cell lines, represent a promising method for studying the mechanisms involved in the vascularisation of constructs in bone tissue en- gineering and could provide new insights into the molecular and cellular mechanisms that control essential processes during angiogenesis. The present study demonstrated the im- portant components of co-culture systems with a focus on bone tissue replacement and the angiogenic effects of pOB and osteosarcoma cell lines on human endothelial cells. Furthermore, the studies emphasised an overall approach for analysis of signal molecules that are involved in the angiogenic activation of human endothelial cells by the regulation of VEGF-related pathways at the transcriptional and translational levels. The osteosarcoma cell lines Cal-72, MG-63 and SaOS-2, as well as pOB from several donors, differed in their angiogenesis-inducing potential in 2-D and 3-D co-culture systems. SaOS-2 cells appeared to have a high osteogenic differentiation level with no detectable angiogenesis-inducing potential in co-culture with human endothelial cells. The angiogenic potential of the osteoblast-like cells is mainly correlated with the upregulation of essential angiogenic growth factors, such as VEGF, bFGF and HGF and the downregulation of the angiogenesis inhibitor, endostatin. However, other factors involved in angiogenic regulation were found to differ between SaOS-2 cells, compared to Cal-72 and MG-63. The present study focuses on VEGF pathway-effecting genes as key players in the regulation of angiogenesis. The levels of VEGF and VEGF-effecting genes, such as TGF-α and TIMP-2 are down-regulated in SaOS-2 cells. In contrast, direct regulators of VEGF, such as IL6, IL8 and TNF are strongly upregulated, which indicates disruptions in growth factor regulating pathways in SaOS-2 cells. Potential pathways, which could be involved include MEK, PI3K, MAPK, STAT3, AKT or ERK. Additional treatment of co-cultures with single growth factors did not accelerate or improve the angiogenesis-inducing potential of SaOS-2 cells. Knowledge of the detailed molecular mechanisms involved in angiogenesis control will hopefully allow improved approaches to be developed for prevascularisation of bone tissue engineering constructs.