5 resultados para Heat shielding

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis is concerned with the study of a quantum physical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. The setup serves as a simplified model for matter in interaction with thermal "radiation" from different sources. Hereby, questions concerning the dynamical and thermodynamic properties of particle-boson configurations far from thermal equilibrium are in the center of interest. We study a specific situation where the particle system is brought in contact with the boson systems (occasionally referred to as heat reservoirs) where the reservoirs are prepared close to thermal equilibrium states, each at a different temperature. We analyze the interacting time evolution of such an initial configuration and we show thermal relaxation of the system into a stationary state, i.e., we prove the existence of a time invariant state which is the unique limit state of the considered initial configurations evolving in time. As long as the reservoirs have been prepared at different temperatures, this stationary state features thermodynamic characteristics as stationary energy fluxes and a positive entropy production rate which distinguishes it from being a thermal equilibrium at any temperature. Therefore, we refer to it as non-equilibrium stationary state or simply NESS. The physical setup is phrased mathematically in the language of C*-algebras. The thesis gives an extended review of the application of operator algebraic theories to quantum statistical mechanics and introduces in detail the mathematical objects to describe matter in interaction with radiation. The C*-theory is adapted to the concrete setup. The algebraic description of the system is lifted into a Hilbert space framework. The appropriate Hilbert space representation is given by a bosonic Fock space over a suitable L2-space. The first part of the present work is concluded by the derivation of a spectral theory which connects the dynamical and thermodynamic features with spectral properties of a suitable generator, say K, of the time evolution in this Hilbert space setting. That way, the question about thermal relaxation becomes a spectral problem. The operator K is of Pauli-Fierz type. The spectral analysis of the generator K follows. This task is the core part of the work and it employs various kinds of functional analytic techniques. The operator K results from a perturbation of an operator L0 which describes the non-interacting particle-boson system. All spectral considerations are done in a perturbative regime, i.e., we assume that the strength of the coupling is sufficiently small. The extraction of dynamical features of the system from properties of K requires, in particular, the knowledge about the spectrum of K in the nearest vicinity of eigenvalues of the unperturbed operator L0. Since convergent Neumann series expansions only qualify to study the perturbed spectrum in the neighborhood of the unperturbed one on a scale of order of the coupling strength we need to apply a more refined tool, the Feshbach map. This technique allows the analysis of the spectrum on a smaller scale by transferring the analysis to a spectral subspace. The need of spectral information on arbitrary scales requires an iteration of the Feshbach map. This procedure leads to an operator-theoretic renormalization group. The reader is introduced to the Feshbach technique and the renormalization procedure based on it is discussed in full detail. Further, it is explained how the spectral information is extracted from the renormalization group flow. The present dissertation is an extension of two kinds of a recent research contribution by Jakšić and Pillet to a similar physical setup. Firstly, we consider the more delicate situation of bosonic heat reservoirs instead of fermionic ones, and secondly, the system can be studied uniformly for small reservoir temperatures. The adaption of the Feshbach map-based renormalization procedure by Bach, Chen, Fröhlich, and Sigal to concrete spectral problems in quantum statistical mechanics is a further novelty of this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Corundum is one of the most famous gems materials. Different heat treatment methods for enhancement purposes are commonly applied and accepted in the gem market. With this reason, the identification of the natural, unheated corundum is intensively investigated. In this study, aluminium hydroxide minerals and zircon are focused to observe the crystallization and phase change of these minerals during heat treatment procedures. Aluminium hydroxide minerals can be transformed to alumina with the corundum structure by heating. The reaction history of aluminium hydroxide minerals containing corundum was investigated comparing it with diaspore, boehmite, gibbsite and bayerite by TG and DTA methods. These hydroxide minerals were entirely transformed to corundum after heating at 600°C. Zircon inclusions in corundums from Ilakaka, Madagascar, were investigated for the influence of different heat-treatment temperatures on the recovery of their crystalline structure and on possible reactions within and with the host crystals. The host corundum was heated at 500, 800, 1000, 1200, 1400, 1600 and 1800°C. The crystallinity, the trapped pressure, and the decomposition of the zircon inclusions within the host corundum have been investigated by Raman spectroscopy. Radiation-damaged zircon inclusions may be used as an indicator for unheated Ilakaka corundum crystals. They are fully recrystallized after heating at 1000°C influencing the lowering of the 3 Raman band shift, the decreasing of FWHM of the 3 Raman band and the decreasing of the trapped pressure between the inclusion and the host corundum. Under microscopic observation, surface alterations of the inclusions can be firstly seen from transparent into frosted-like appearance at 1400°C. Then, between 1600°C and 1800 °C, the inclusion becomes partly or even completely molten. The decomposition of the zircon inclusion to m-ZrO2 and SiO2-glass phases begins at the rim of the inclusion after heating from 1200°C to 1600°C which can be detected by the surface change, the increase of the 3 Raman band position and the trapped pressure. At 1800°C, the zircon inclusions entirely melt transforming to solid phases during cooling like m-ZrO2 and SiO2-glass accompanied by an increase of pressure between the transformed inclusion and its host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coupled-cluster theory provides one of the most successful concepts in electronic-structure theory. This work covers the parallelization of coupled-cluster energies, gradients, and second derivatives and its application to selected large-scale chemical problems, beside the more practical aspects such as the publication and support of the quantum-chemistry package ACES II MAB and the design and development of a computational environment optimized for coupled-cluster calculations. The main objective of this thesis was to extend the range of applicability of coupled-cluster models to larger molecular systems and their properties and therefore to bring large-scale coupled-cluster calculations into day-to-day routine of computational chemistry. A straightforward strategy for the parallelization of CCSD and CCSD(T) energies, gradients, and second derivatives has been outlined and implemented for closed-shell and open-shell references. Starting from the highly efficient serial implementation of the ACES II MAB computer code an adaptation for affordable workstation clusters has been obtained by parallelizing the most time-consuming steps of the algorithms. Benchmark calculations for systems with up to 1300 basis functions and the presented applications show that the resulting algorithm for energies, gradients and second derivatives at the CCSD and CCSD(T) level of theory exhibits good scaling with the number of processors and substantially extends the range of applicability. Within the framework of the ’High accuracy Extrapolated Ab initio Thermochemistry’ (HEAT) protocols effects of increased basis-set size and higher excitations in the coupled- cluster expansion were investigated. The HEAT scheme was generalized for molecules containing second-row atoms in the case of vinyl chloride. This allowed the different experimental reported values to be discriminated. In the case of the benzene molecule it was shown that even for molecules of this size chemical accuracy can be achieved. Near-quantitative agreement with experiment (about 2 ppm deviation) for the prediction of fluorine-19 nuclear magnetic shielding constants can be achieved by employing the CCSD(T) model together with large basis sets at accurate equilibrium geometries if vibrational averaging and temperature corrections via second-order vibrational perturbation theory are considered. Applying a very similar level of theory for the calculation of the carbon-13 NMR chemical shifts of benzene resulted in quantitative agreement with experimental gas-phase data. The NMR chemical shift study for the bridgehead 1-adamantyl cation at the CCSD(T) level resolved earlier discrepancies of lower-level theoretical treatment. The equilibrium structure of diacetylene has been determined based on the combination of experimental rotational constants of thirteen isotopic species and zero-point vibrational corrections calculated at various quantum-chemical levels. These empirical equilibrium structures agree to within 0.1 pm irrespective of the theoretical level employed. High-level quantum-chemical calculations on the hyperfine structure parameters of the cyanopolyynes were found to be in excellent agreement with experiment. Finally, the theoretically most accurate determination of the molecular equilibrium structure of ferrocene to date is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wir untersuchen die Mathematik endlicher, an ein Wärmebad gekoppelter Teilchensysteme. Das Standard-Modell der Quantenelektrodynamik für Temperatur Null liefert einen Hamilton-Operator H, der die Energie von Teilchen beschreibt, welche mit Photonen wechselwirken. Im Heisenbergbild ist die Zeitevolution des physikalischen Systems durch die Wirkung einer Ein-Parameter-Gruppe auf eine Menge von Observablen A gegeben: Diese steht im Zusammenhang mit der Lösung der Schrödinger-Gleichung für H. Um Zustände von A, welche das physikalische System in der Nähe des thermischen Gleichgewichts zur Temperatur T darstellen, zu beschreiben, folgen wir dem Ansatz von Jaksic und Pillet, eine Darstellung von A zu konstruieren. Die Vektoren in dieser Darstellung definieren die Zustände, die Zeitentwicklung wird mit Hilfe des Standard Liouville-Operators L beschrieben. In dieser Doktorarbeit werden folgende Resultate bewiesen bzw. hergeleitet: - die Konstuktion einer Darstellung - die Selbstadjungiertheit des Standard Liouville-Operators - die Existenz eines Gleichgewichtszustandes in dieser Darstellung - der Limes des physikalischen Systems für große Zeiten.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory.rnAs its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained.rnThe constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point.rnFinally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement of existing computations, taking the independent running of the Euler topological term into account. Known perturbative results are reproduced in this case from the renormalization group equation, identifying however a unique non-Gaussian fixed point.rn