3 resultados para Growth-stimulating Factor

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

UV-B-Strahlung, die durch die fortschreitende Zerstörung der Ozonschicht zunimmt, ist hauptsächlich für das Entstehen von Basaliomen und Plattenepithelkarzinomen verantwort-lich, an denen jedes Jahr etwa 2-3 Millionen Menschen weltweit erkranken. UV-B indu-zierte Hautkarzinogenese ist ein komplexer Prozess, bei dem vor allem die mutagenen und immunsuppressiven Wirkungen der UV-B-Strahlung von Bedeutung sind. Die Rolle von GM-CSF in der Hautkarzinogenese ist dabei widersprüchlich. Aus diesem Grund wurde die Funktion von GM-CSF in vivo in der UV-B induzierten Hautkarzinogenese mittels zwei bereits etablierter Mauslinien untersucht: Erstens transgene Mäuse, die einen GM-CSF Antagonisten unter der Kontrolle des Keratin-10-Promotors in den suprabasalen Schichten der Epidermis exprimieren und zweitens solche, die unter dem Keratin-5-Promotor murines GM-CSF in der Basalschicht der Epidermis überexprimieren. Eine Gruppe von Tieren wurde chronisch, die andere akut bestrahlt. Die konstitutionelle Verfassung der Tiere mit erhöhter GM-CSF-Aktivität in der Haut war nach chronischer UV-B-Bestrahlung insgesamt sehr schlecht. Sie wiesen deshalb eine stark erhöhte Mortali-tät auf. Dies ist sowohl auf die hohe Inzidenz als auch dem frühen Auftreten der benignen und malignen Läsionen zurückzuführen. Eine verminderte GM-CSF Aktivität verzögerte dagegen die Karzinomentwicklung und erhöhte die Überlebensrate leicht. GM-CSF wirkt auf verschiedenen Ebenen tumorpromovierend: Erstens erhöht eine gesteigerte Mastzell-anzahl in der Haut der GM-CSF überexprimierenden Tiere per se die Suszeptibilität für Hautkarzinogenese. Zweitens stimuliert GM-CSF die Keratinozytenproliferation. Dadurch kommt es nach UV-B-Bestrahlung zu einer prolongierten epidermalen Hyperproliferation, die zur endogenen Tumorpromotion beiträgt, indem sie die Bildung von Neoplasien unter-stützt. Der Antagonist verzögert dagegen den Proliferationsbeginn, die Keratinozyten blei-ben demzufolge länger in der G1-Phase und der durch UV-B verursachte DNA-Schaden kann effizienter repariert werden. Drittens kann GM-CSF die LCs nicht als APCs aktivie-ren und eine Antitumorimmunität induzieren, da UV-B-Strahlung zur Apoptose von LCs bzw. zu deren Migration in Richtung Lymphknoten führt. Zusätzlich entwickeln GM-CSF überexprimierende Tiere in ihrer Haut nach UV-B-Bestrahlung ein Millieu von antago-nistisch wirkenden Zytokinen, wie TNF-a, TGF-b1 und IL-12p40 und GM-CSF, die proinflammatorische Prozesse und somit die Karzinomentwicklung begünstigen. Der Anta-gonist hemmt nach UV-B-Bestrahlung die Ausschüttung sowohl von immunsuppressiven Zytokinen, wie etwa TNF-a, als auch solchen, die die Th2-Entwicklung unterstützen, wie etwa IL-10 und IL-4. Dies wirkt sich negativ auf die Karzinomentwicklung aus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neben Tomatensaft wurde eine Vielzahl von Säften und Blattextrakten als Medienzusätze auf Wachstumsförderung bei 30 verschiedenen Oenococcus oeni-Stämmen getestet. Es zeigte sich eine breite Wachstumsförderung bei allen Zusätzen mit Ausnahme von Zitronensaft, sodass die Wachstumsfaktoren keine tomatenspezifischen Inhaltsstoffe sein können und eher ubiquitär in der Pflanzenwelt vorkommen. Das Ausmaß der Wachstumsförderung war stammabhängig sehr unterschiedlich und Tomatensaft stellte keineswegs für alle Stämme den optimalen Medienzusatz dar. Durch Schälen der Früchte war eine für die Analytik hilfreiche Abtrennung schalenspezifischer Inhaltsstoffe möglich, wobei auch die Schalenextrakte großes Potential für die Suche nach Wachstumsfaktoren offenbarten und die Wichtigkeit einer Auftrennung der Frucht in die verschiedenen Fruchtbereiche betonte. Aus Tomatensaft konnte analytisch der anorganische Wachstumsfaktor Mangan identifiziert werden. Die größten Zelldichten der Oenokokken-Stämme wurden hierbei bei 67 µM und 34 mM Manganzusatz erreicht. Bei 13 von 20 getesteten Oenokokkenstämmen konnte bei Zusatz von 34 mM Mangan der Tomatensaft ersetzt werden, bei 4 Stämmen (z. B. Stamm B2) fehlten jedoch noch weitere Wachstumsfaktoren und bei 3 Stämmen (z. B. Stamm B120) kam es zu einem verfrühten Absterben. Da weitere Mineralstoffe sowie veraschte Säfte und Blattextrakte keinen positiven Einfluß auf die Oenokokken-Zelldichte hatten, wurde mittels semipräparativer HPLC nach zusätzlichen organischen Wachstumsfaktoren für den Stamm B2 gesucht. Hierzu wurde der nachfolgende Wachstums-Assay miniaturisiert und erfolgreich auf Microtiterplatten etabliert. Es gelang die Isolierung und Identifizierung eines wachstumsfördernden Trisaccharides aus Mangoschalen-Extrakt, das aus den Zuckern Glucose, Rhamnose und Arabinose bestand. Von den monomeren Zuckern erhöhte lediglich die Arabinose die Zelldichte, das Optimum lag bei 1,5 g/l. Auch aus Zitronenmesokarp-Extrakt war die Isolierung eines wachstumsfördernden arabinosehaltigen Disaccharides möglich, die Menge reichte jedoch noch nicht für eine genaue Identifizierung aus. Desweiteren erwies sich 1,5 g/l Cystein als wachstumsstimulierend. Ein Zusatz aller gefundenen Wachstumsfaktoren (34 mM Mangan, 1,5 g/l Arabinose und 1,5 g/l Cystein) ersetzte den Tomatensaft bei weiteren Oenokokken-Stämmen (z.B. Stamm B120) komplett, wobei bei allen Stämmen sogar eine schnellere Anzucht erfolgte. Neben dem Tomatensaft war auch der Zusatz von Hefeextrakt zum Grundmedium nicht mehr nötig, sodass ein neues vereinfachtes Medium für die Anzucht von Oenokokken mit komplexen Nährstoffansprüchen vorgeschlagen werden konnte. Lediglich beim Stamm B2 zeigte sich noch ein OD-Unterschied von 0,2 in der stationären Phase, der nach Adsorptionsversuchen an Polyvinylpolypyrrolidon auf noch unidentifizierte Polyphenole im Tomatensaft zurückzuführen ist. Aus grünem Tee erwies sich das Polyphenol Epigallocatechingallat (EGCG) konzentrationsabhängig sowohl als Hemmstoff (>550 mg/l EGCG) als auch Wachstumsfaktor (400-500 mg/l EGCG) für den Oenokokken-Stamm B2. Der hemmende als auch der fördernde Einfluss auf das Wachstum wurde mittels Sytox/DAPI-Färbung bestätigt. Der sogenannte „Tomatensaft-Faktor“ ist also nicht eine spezielle Substanz, sondern das synergistische Zusammenwirken mehrerer einfacher Substanzen wie Mineralstoffe, Aminosäuren, Kohlenhydrate und Polyphenole. Auch sind die Oenokokken-Stämme bezüglich ihres Nährstoffbedarfes sehr unterschiedlich, sodass für jeden Stamm einzeln das optimale Substratspektrum ermittelt werden muss.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Die akute myeloische Leukämie (AML) ist eine heterogene Erkrankung der hämatopoetischen Vorläuferzelle, die durch unkontrollierte Vermehrung und ein reduziertes Differenzierungsverhalten gekennzeichnet ist. Aufgrund von Therapieresistenzen und häufig vorkommenden Rückfällen ist die AML mit einer schlechten Langzeitprognose verbunden. Neue Studienergebnisse zeigen, dass leukämische Zellen einer hierarchischen Ordnung unterliegen, an deren Spitze die leukämische Stammzelle (LSC) steht, welche den Tumor speist und ähnliche Charakteristika besitzt wie die hämatopoetische Stammzelle. Die LSC nutzt den Kontakt zu Zellen der hämatopoetischen Nische des Knochenmarks, um die erste Therapie zu überdauern und Resistenzen zu erwerben. Neue Therapieansätze versuchen diese Interaktion zwischen leukämischen Zellen und supportiv wirkenden Stromazellen anzugreifen. rnrnIn dieser Arbeit sollte die Bedeutung des CXC-Motiv Chemokinrezeptors Typ 4 (CXCR4) und des Connective Tissue Growth Factors (CTGF) innerhalb der AML-Stroma-Interaktion untersucht werden. CXCR4, der in vivo dafür sorgt, dass AML-Zellen in der Nische gehalten und geschützt werden, wurde durch den neuwertigen humanen CXCR4-spezifischen Antikörper BMS-936564/MDX-1338 in AML-Zelllinien und Patientenzellen in Zellkulturversuchen blockiert. Dies induzierte Apoptose sowie Differenzierung und führte in Kokulturversuchen zu einer Aufhebung des Stroma-vermittelten Schutzes gegenüber der Chemotherapie. Für diese Effekte musste teilweise ein sekundärer Antikörper verwendet werden, der die CXCR4-Moleküle miteinander kreuzvernetzt.rnDie Auswertung eines quantitativen Real time PCR (qPCR)-Arrays ergab, dass CTGF in der AML-Zelllinie Molm-14 nach Kontakt zu Stromazellen hochreguliert wird. Diese Hochregulation konnte in insgesamt drei AML-Zelllinien sowie in drei Patientenproben in qPCR- und Western Blot-Versuchen bestätigt werden. Weitere Untersuchungen zeigten, dass diese Hochregulation (i) unabhängig von der Stromazelllinie ist, (ii) den direkten Kontakt zum Stroma benötigt und (iii) auch unter hypoxischen Bedingungen, wie sie innerhalb des Knochenmarks vorherrschen, stattfindet. Der durch Zell-Zell- oder Zell-Matrix-Kontakt gesteuerte Hippo-Signalweg konnte aus folgenden Gründen als möglicher upstream-Regulationsmechanismus identifiziert werden: (i) Dessen zentraler Transkriptions-Kofaktor TAZ wurde in kokultivierten Molm-14-Zellen stabilisiert, (ii) der shRNA-gesteuerte Knockdown von TAZ führte zu einer reduzierten CTGF-Hochregulation, (iii) CTGF wurde in Abhängigkeit von der Zelldichte reguliert, (iv) Cysteine-rich angiogenic inducer 61 (Cyr61), ein weiteres Zielgen von TAZ, wurde in kokultivierten AML-Zellen ebenfalls verstärkt exprimiert. Der Knockdown von CTGF führte in vitro zu einer partiellen Aufhebung der Stroma-vermittelten Resistenz und die Blockierung von CTGF durch den Antikörper FG-3019 wirkte im AML-Mausmodell lebensverlängernd. rn rnDie Rolle von CTGF in der AML ist bisher nicht untersucht. Die vorliegenden Ergebnisse zeigen, dass CTGF ein interessantes Therapieziel in der AML darstellt. Es bedarf weiterer Untersuchungen, um die Bedeutung von CTGF in der Tumor-Stroma-Interaktion näher zu charakterisieren und nachgeschaltete Signalwege zu identifizieren.