4 resultados para Greenland
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Die Ränder des Labrador Meeres wurden während des späten Neoproterozoikums intensiv von karbonatreichen silikatischen Schmelzen durchsetzt. Diese Schmelzen bildeted sich bei Drucken zwischen ca. 4-6 GPa (ca. 120-180 km Tiefe) an der Basis der kontinentalen Mantel-Lithosphäre. Diese Magmengenerierung steht in zeitlichem und räumlichem Zusammenhang mit kontinentalen Extensionsprozessen, welche zu beiden Seiten des sich öffnenden Iapetus-Ozeans auftraten.
Resumo:
The present-day climate in the Mediterranean region is characterized by mild, wet winters and hot, dry summers. There is contradictory evidence as to whether the present-day conditions (“Mediterranean climate”) already existed in the Late Miocene. This thesis presents seasonally-resolved isotope and element proxy data obtained from Late Miocene reef corals from Crete (Southern Aegean, Eastern Mediterranean) in order to illustrate climate conditions in the Mediterranean region during this time. There was a transition from greenhouse to icehouse conditions without a Greenland ice sheet during the Late Miocene. Since the Greenland ice sheet is predicted to melt fully within the next millennia, Late Miocene climate mechanisms can be considered as useful analogues in evaluating models of Northern Hemispheric climate conditions in the future. So far, high resolution chemical proxy data on Late Miocene environments are limited. In order to enlarge the proxy database for this time span, coral genus Tarbellastraea was evaluated as a new proxy archive, and proved reliable based on consistent oxygen isotope records of Tarbellastraea and the established paleoenvironmental archive of coral genus Porites. In combination with lithostratigraphic data, global 87Sr/86Sr seawater chronostratigraphy was used to constrain the numerical age of the coral sites, assuming the Mediterranean Sea to be equilibrated with global open ocean water. 87Sr/86Sr ratios of Tarbellastraea and Porites from eight stratigraphically different sampling sites were measured by thermal ionization mass spectrometry. The ratios range from 0.708900 to 0.708958 corresponding to ages of 10 to 7 Ma (Tortonian to Early Messinian). Spectral analyses of multi-decadal time-series yield interannual δ18O variability with periods of ~2 and ~5 years, similar to that of modern records, indicating that pressure field systems comparable to those controlling the seasonality of present-day Mediterranean climate existed, at least intermittently, already during the Late Miocene. In addition to sea surface temperature (SST), δ18O composition of coral aragonite is controlled by other parameters such as local seawater composition which as a result of precipitation and evaporation, influences sea surface salinity (SSS). The Sr/Ca ratio is considered to be independent of salinity, and was used, therefore, as an additional proxy to estimate seasonality in SST. Major and trace element concentrations in coral aragonite determined by laser ablation inductively coupled plasma mass spectrometry yield significant variations along a transect perpendicular to coral growth increments, and record varying environmental conditions. The comparison between the average SST seasonality of 7°C and 9°C, derived from average annual δ18O (1.1‰) and Sr/Ca (0.579 mmol/mol) amplitudes, respectively, indicates that the δ18O-derived SST seasonality is biased by seawater composition, reducing the δ18O amplitude by 0.3‰. This value is equivalent to a seasonal SSS variation of 1‰, as observed under present-day Aegean Sea conditions. Concentration patterns of non-lattice bound major and trace elements, related to trapped particles within the coral skeleton, reflect seasonal input of suspended load into the reef environment. δ18O, Sr/Ca and non-lattice bound element proxy records, as well as geochemical compositions of the trapped particles, provide evidence for intense precipitation in the Eastern Mediterranean during winters. Winter rain caused freshwater discharge and transport of weathering products from the hinterland into the reef environment. There is a trend in coral δ18O data to more positive mean δ18O values (–2.7‰ to –1.7‰) coupled with decreased seasonal δ18O amplitudes (1.1‰ to 0.7‰) from 10 to 7 Ma. This relationship is most easily explained in terms of more positive summer δ18O. Since coral diversity and annual growth rates indicate more or less constant average SST for the Mediterranean from the Tortonian to the Early Messinian, more positive mean and summer δ18O indicate increasing aridity during the Late Miocene, and more pronounced during summers. The analytical results implicate that winter rainfall and summer drought, the main characteristics of the present-day Mediterranean climate, were already present in the Mediterranean region during the Late Miocene. Some models have argued that the Mediterranean climate did not exist in this region prior to the Pliocene. However, the data presented here show that conditions comparable to those of the present-day existed either intermittently or permanently since at least about 10 Ma.
Resumo:
The composition of the atmosphere is frequently perturbed by the emission of gaseous and particulate matter from natural as well as anthropogenic sources. While the impact of trace gases on the radiative forcing of the climate is relatively well understood the role of aerosol is far more uncertain. Therefore, the study of the vertical distribution of particulate matter in the atmosphere and its chemical composition contribute valuable information to bridge this gap of knowledge. The chemical composition of aerosol reveals information on properties such as radiative behavior and hygroscopicity and therefore cloud condensation or ice nucleus potential. rnThis thesis focuses on aerosol pollution plumes observed in 2008 during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) campaign over Greenland in June/July and CONCERT (Contrail and Cirrus Experiment) campaign over Central and Western Europe in October/November. Measurements were performed with an Aerodyne compact time-of-flight aerosol mass spectrometer (AMS) capable of online size-resolved chemical characterization of non-refractory submicron particles. In addition, the origins of pollution plumes were determined by means of modeling tools. The characterized pollution episodes originated from a large variety of sources and were encountered at distinct altitudes. They included pure natural emissions from two volcanic eruptions in 2008. By the time of detection over Western Europe between 10 and 12 km altitude the plume was about 3 months old and composed to 71 % of particulate sulfate and 21 % of carbonaceous compounds. Also, biomass burning (BB) plumes were observed over Greenland between 4 and 7 km altitude (free troposphere) originating from Canada and East Siberia. The long-range transport took roughly one and two weeks, respectively. The aerosol was composed of 78 % organic matter and 22 % particulate sulfate. Some Canadian and all Siberian BB plumes were mixed with anthropogenic emissions from fossil fuel combustion (FF) in North America and East Asia. It was found that the contribution of particulate sulfate increased with growing influences from anthropogenic activity and Asia reaching up to 37 % after more than two weeks of transport time. The most exclusively anthropogenic emission source probed in the upper troposphere was engine exhaust from commercial aircraft liners over Germany. However, in-situ characterization of this aerosol type during aircraft chasing was not possible. All long-range transport aerosol was found to have an O:C ratio close to or greater than 1 implying that low-volatility oxygenated organic aerosol was present in each case despite the variety of origins and the large range in age from 3 to 100 days. This leads to the conclusion that organic particulate matter reaches a final and uniform state of oxygenation after at least 3 days in the free troposphere. rnExcept for aircraft exhaust all emission sources mentioned above are surface-bound and thus rely on different types of vertical transport mechanisms, such as direct high altitude injection in the case of a volcanic eruption, or severe BB, or uplift by convection, to reach higher altitudes where particles can travel long distances before removal mainly caused by cloud scavenging. A lifetime for North American mixed BB and FF aerosol of 7 to 11 days was derived. This in consequence means that emission from surface point sources, e.g. volcanoes, or regions, e.g. East Asia, do not only have a relevant impact on the immediate surroundings but rather on a hemispheric scale including such climate sensitive zones as the tropopause or the Arctic.
Resumo:
In order to obtain a better understanding about the influence of post-depositional diagenesis on speleothem 230Th/U-ages and paleoclimate variability during Marine Isotope Stage (MIS) 5 in northern Germany, four stalagmites from the Riesenberghöhle (RBH) were investigated by thin section analysis, 230Th/U-dating as well as stable oxygen and carbon isotope and laser ablation inductively coupled mass spectrometry (LA-ICPMS) trace element analysis. The RBH is located in the Weser Hills and is one of the northernmost limestone caves in Germany.rnMulti collector (MC) ICPMS 230Th/U-ages and thin section analysis of the RBH stalagmites shows that some growth phases of the stalagmites were diagenetically altered after their deposition. The impact of post-depositional diagenesis (PDD) on the 230Th/U-ages is modeled, and potential processes leading to PDD are discussed. In this context, it is suggested that PDD may be induced by rapid climate change at the inception of the GIS.rnDespite of the dating uncertainties resulting from PDD, 230Th/U-dating shows that the RBH stalagmites grew during the Eemian and most of the Greenland Interstadials (GIS) during MIS 5. Thus, the growth phases of the RBH stalagmites might be related to a reorganization of the Atlantic Meridional Overturning Circulation (AMOC). The stable isotope (δ13C and δ18O) and the trace element variability of the stalagmites reflects rapid changes of past temperature and precipitation on millennial and sub-millennial timescales. These past climate changes can be amplified by orbitally forced variations of the July solar insolation at 65°N.