3 resultados para G-Hilbert Scheme
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Given a reductive group G acting on an affine scheme X over C and a Hilbert function h: Irr G → N_0, we construct the moduli space M_Ө(X) of Ө-stable (G,h)-constellations on X, which is a common generalisation of the invariant Hilbert scheme after Alexeev and Brion and the moduli space of Ө-stable G-constellations for finite groups G introduced by Craw and Ishii. Our construction of a morphism M_Ө(X) → X//G makes this moduli space a candidate for a resolution of singularities of the quotient X//G. Furthermore, we determine the invariant Hilbert scheme of the zero fibre of the moment map of an action of Sl_2 on (C²)⁶ as one of the first examples of invariant Hilbert schemes with multiplicities. While doing this, we present a general procedure for the realisation of such calculations. We also consider questions of smoothness and connectedness and thereby show that our Hilbert scheme gives a resolution of singularities of the symplectic reduction of the action.
Resumo:
Deutsche Version: Zunächst wird eine verallgemeinerte Renormierungsgruppengleichung für die effektiveMittelwertwirkung der EuklidischenQuanten-Einstein-Gravitation konstruiert und dann auf zwei unterschiedliche Trunkierungen, dieEinstein-Hilbert-Trunkierung und die$R^2$-Trunkierung, angewendet. Aus den resultierendenDifferentialgleichungen wird jeweils die Fixpunktstrukturbestimmt. Die Einstein-Hilbert-Trunkierung liefert nebeneinem Gaußschen auch einen nicht-Gaußschen Fixpunkt. Diesernicht-Gaußsche Fixpunkt und auch der Fluß in seinemEinzugsbereich werden mit hoher Genauigkeit durch die$R^2$-Trunkierung reproduziert. Weiterhin erweist sichdie Cutoffschema-Abhängigkeit der analysierten universellenGrößen als äußerst schwach. Diese Ergebnisse deuten daraufhin, daß dieser Fixpunkt wahrscheinlich auch in der exaktenTheorie existiert und die vierdimensionaleQuanten-Einstein-Gravitation somit nichtperturbativ renormierbar sein könnte. Anschließend wird gezeigt, daß der ultraviolette Bereich der$R^2$-Trunkierung und somit auch die Analyse des zugehörigenFixpunkts nicht von den Stabilitätsproblemen betroffen sind,die normalerweise durch den konformen Faktor der Metrikverursacht werden. Dadurch motiviert, wird daraufhin einskalares Spielzeugmodell, das den konformen Sektor einer``$-R+R^2$''-Theorie simuliert, hinsichtlich seinerStabilitätseigenschaften im infraroten (IR) Bereichstudiert. Dabei stellt sich heraus, daß sich die Theorieunter Ausbildung einer nichttrivialen Vakuumstruktur auf dynamische Weise stabilisiert. In der Gravitation könnteneventuell nichtlokale Invarianten des Typs $intd^dx,sqrt{g}R (D^2)^{-1} R$ dafür sorgen, daß der konformeSektor auf ähnliche Weise IR-stabil wird.
Resumo:
The present thesis is concerned with certain aspects of differential and pseudodifferential operators on infinite dimensional spaces. We aim to generalize classical operator theoretical concepts of pseudodifferential operators on finite dimensional spaces to the infinite dimensional case. At first we summarize some facts about the canonical Gaussian measures on infinite dimensional Hilbert space riggings. Considering the naturally unitary group actions in $L^2(H_-,gamma)$ given by weighted shifts and multiplication with $e^{iSkp{t}{cdot}_0}$ we obtain an unitary equivalence $F$ between them. In this sense $F$ can be considered as an abstract Fourier transform. We show that $F$ coincides with the Fourier-Wiener transform. Using the Fourier-Wiener transform we define pseudodifferential operators in Weyl- and Kohn-Nirenberg form on our Hilbert space rigging. In the case of this Gaussian measure $gamma$ we discuss several possible Laplacians, at first the Ornstein-Uhlenbeck operator and then pseudo-differential operators with negative definite symbol. In the second case, these operators are generators of $L^2_gamma$-sub-Markovian semi-groups and $L^2_gamma$-Dirichlet-forms. In 1992 Gramsch, Ueberberg and Wagner described a construction of generalized Hörmander classes by commutator methods. Following this concept and the classical finite dimensional description of $Psi_{ro,delta}^0$ ($0leqdeltaleqroleq 1$, $delta< 1$) in the $C^*$-algebra $L(L^2)$ by Beals and Cordes we construct in both cases generalized Hörmander classes, which are $Psi^*$-algebras. These classes act on a scale of Sobolev spaces, generated by our Laplacian. In the case of the Ornstein-Uhlenbeck operator, we prove that a large class of continuous pseudodifferential operators considered by Albeverio and Dalecky in 1998 is contained in our generalized Hörmander class. Furthermore, in the case of a Laplacian with negative definite symbol, we develop a symbolic calculus for our operators. We show some Fredholm-criteria for them and prove that these Fredholm-operators are hypoelliptic. Moreover, in the finite dimensional case, using the Gaussian-measure instead of the Lebesgue-measure the index of these Fredholm operators is still given by Fedosov's formula. Considering an infinite dimensional Heisenberg group rigging we discuss the connection of some representations of the Heisenberg group to pseudo-differential operators on infinite dimensional spaces. We use this connections to calculate the spectrum of pseudodifferential operators and to construct generalized Hörmander classes given by smooth elements which are spectrally invariant in $L^2(H_-,gamma)$. Finally, given a topological space $X$ with Borel measure $mu$, a locally compact group $G$ and a representation $B$ of $G$ in the group of all homeomorphisms of $X$, we construct a Borel measure $mu_s$ on $X$ which is invariant under $B(G)$.