4 resultados para Gödel theorem

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zusammenfassung:In dieser Arbeit werden die Abzweigung stationärer Punkte und periodischer Lösungen von isolierten stationären Punkten rein nichtlinearer Differentialgleichungen in der reellenEbene betrachtet.Das erste Kapitel enthält einige technische Hilfsmittel, während im zweiten ausführlich das Verhalten von Differentialgleichungen in der Ebene mit zwei homogenen Polynomen gleichen Grades als rechter Seite diskutiert wird.Im dritten Kapitel beginnt der Hauptteil der Arbeit. Hier wird eine Verallgemeinerung des Hopf'schen Verzweigungssatzes bewiesen, der den klassischen Satz als Spezialfall enthält.Im vierten Kapitel untersuchen wir die Abzweigung stationärer Punkte und im letzten Kapitel die Abzweigung periodischer Lösungen unter Störungen, deren Ordnung echt kleiner ist, als die erste nichtverschwindende Näherung der ungestörten Gleichung.Alle Voraussetzungen in dieser Arbeit sind leicht nachzurechnen und es werden zahlreiche Beispiele ausführlich diskutiert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, new precision experiments have become possible withthe high luminosity accelerator facilities at MAMIand JLab, supplyingphysicists with precision data sets for different hadronic reactions inthe intermediate energy region, such as pion photo- andelectroproduction and real and virtual Compton scattering.By means of the low energy theorem (LET), the global properties of thenucleon (its mass, charge, and magnetic moment) can be separated fromthe effects of the internal structure of the nucleon, which areeffectively described by polarizabilities. Thepolarizabilities quantify the deformation of the charge andmagnetization densities inside the nucleon in an applied quasistaticelectromagnetic field. The present work is dedicated to develop atool for theextraction of the polarizabilities from these precise Compton data withminimum model dependence, making use of the detailed knowledge of pionphotoproduction by means of dispersion relations (DR). Due to thepresence of t-channel poles, the dispersion integrals for two ofthe six Compton amplitudes diverge. Therefore, we have suggested to subtract the s-channel dispersion integrals at zero photon energy($nu=0$). The subtraction functions at $nu=0$ are calculated through DRin the momentum transfer t at fixed $nu=0$, subtracted at t=0. For this calculation, we use the information about the t-channel process, $gammagammatopipito Nbar{N}$. In this way, four of thepolarizabilities can be predicted using the unsubtracted DR in the $s$-channel. The other two, $alpha-beta$ and $gamma_pi$, are free parameters in ourformalism and can be obtained from a fit to the Compton data.We present the results for unpolarized and polarized RCS observables,%in the kinematics of the most recent experiments, and indicate anenhanced sensitivity to the nucleon polarizabilities in theenergy range between pion production threshold and the $Delta(1232)$-resonance.newlineindentFurthermore,we extend the DR formalism to virtual Compton scattering (radiativeelectron scattering off the nucleon), in which the concept of thepolarizabilities is generalized to the case of avirtual initial photon by introducing six generalizedpolarizabilities (GPs). Our formalism provides predictions for the fourspin GPs, while the two scalar GPs $alpha(Q^2)$ and $beta(Q^2)$ have to befitted to the experimental data at each value of $Q^2$.We show that at energies betweenpion threshold and the $Delta(1232)$-resonance position, thesensitivity to the GPs can be increased significantly, as compared tolow energies, where the LEX is applicable. Our DR formalism can be used for analysing VCS experiments over a widerange of energy and virtuality $Q^2$, which allows one to extract theGPs from VCS data in different kinematics with a minimum of model dependence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Im Mittelpunkt dieser Arbeit steht Beweis der Existenz- und Eindeutigkeit von Quadraturformeln, die für das Qualokationsverfahren geeignet sind. Letzteres ist ein von Sloan, Wendland und Chandler entwickeltes Verfahren zur numerischen Behandlung von Randintegralgleichungen auf glatten Kurven (allgemeiner: periodische Pseudodifferentialgleichungen). Es erreicht die gleichen Konvergenzordnungen wie das Petrov-Galerkin-Verfahren, wenn man durch den Operator bestimmte Quadraturformeln verwendet. Zunächst werden die hier behandelten Pseudodifferentialoperatoren und das Qualokationsverfahren vorgestellt. Anschließend wird eine Theorie zur Existenz und Eindeutigkeit von Quadraturformeln entwickelt. Ein wesentliches Hilfsmittel hierzu ist die hier bewiesene Verallgemeinerung eines Satzes von Nürnberger über die Existenz und Eindeutigkeit von Quadraturformeln mit positiven Gewichten, die exakt für Tschebyscheff-Räume sind. Es wird schließlich gezeigt, dass es stets eindeutig bestimmte Quadraturformeln gibt, welche die in den Arbeiten von Sloan und Wendland formulierten Bedingungen erfüllen. Desweiteren werden 2-Punkt-Quadraturformeln für so genannte einfache Operatoren bestimmt, mit welchen das Qualokationsverfahren mit einem Testraum von stückweise konstanten Funktionen eine höhere Konvergenzordnung hat. Außerdem wird gezeigt, dass es für nicht-einfache Operatoren im Allgemeinen keine Quadraturformel gibt, mit der die Konvergenzordnung höher als beim Petrov-Galerkin-Verfahren ist. Das letzte Kapitel beinhaltet schließlich numerische Tests mit Operatoren mit konstanten und variablen Koeffizienten, welche die theoretischen Ergebnisse der vorangehenden Kapitel bestätigen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents new methods to simulate systems with hydrodynamic and electrostatic interactions. Part 1 is devoted to computer simulations of Brownian particles with hydrodynamic interactions. The main influence of the solvent on the dynamics of Brownian particles is that it mediates hydrodynamic interactions. In the method, this is simulated by numerical solution of the Navier--Stokes equation on a lattice. To this end, the Lattice--Boltzmann method is used, namely its D3Q19 version. This model is capable to simulate compressible flow. It gives us the advantage to treat dense systems, in particular away from thermal equilibrium. The Lattice--Boltzmann equation is coupled to the particles via a friction force. In addition to this force, acting on {it point} particles, we construct another coupling force, which comes from the pressure tensor. The coupling is purely local, i.~e. the algorithm scales linearly with the total number of particles. In order to be able to map the physical properties of the Lattice--Boltzmann fluid onto a Molecular Dynamics (MD) fluid, the case of an almost incompressible flow is considered. The Fluctuation--Dissipation theorem for the hybrid coupling is analyzed, and a geometric interpretation of the friction coefficient in terms of a Stokes radius is given. Part 2 is devoted to the simulation of charged particles. We present a novel method for obtaining Coulomb interactions as the potential of mean force between charges which are dynamically coupled to a local electromagnetic field. This algorithm scales linearly, too. We focus on the Molecular Dynamics version of the method and show that it is intimately related to the Car--Parrinello approach, while being equivalent to solving Maxwell's equations with freely adjustable speed of light. The Lagrangian formulation of the coupled particles--fields system is derived. The quasi--Hamiltonian dynamics of the system is studied in great detail. For implementation on the computer, the equations of motion are discretized with respect to both space and time. The discretization of the electromagnetic fields on a lattice, as well as the interpolation of the particle charges on the lattice is given. The algorithm is as local as possible: Only nearest neighbors sites of the lattice are interacting with a charged particle. Unphysical self--energies arise as a result of the lattice interpolation of charges, and are corrected by a subtraction scheme based on the exact lattice Green's function. The method allows easy parallelization using standard domain decomposition. Some benchmarking results of the algorithm are presented and discussed.