4 resultados para Fixing
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Amalgamersatz:Neue Wege zur Herstellung von Dentalkompositen mit geringem Polymerisationsschrumpf auf (Meth-)Acrylat-Basis Aufgrund der ästhetischen und gesundheitlichen Bedenken wird seit Jahrzehnten nach einer Alternative für Amalgam als Zahnfüllmaterial gesucht. Der größte Nachteil von organischen Monomeren liegt in der Volumenkontraktion während der Aushärtung, welche sich negativ auf die Materialeigenschaften auswirkt. Aus diesem Grund war das Hauptziel dieser Arbeit, eine Minimierung des Schrumpfes bei der radikalischen Polymerisation zu erreichen. Dazu wurden verschiedene, zum Teil neue, (Meth-)Acrylate synthetisiert und auf ihre Einsetzbarkeit als Bestandteil von Dentalkompositen geprüft.Um die Volumenkontraktion während der Polymerisation zu minimieren, wurde die Beweglichkeit der polymerisierbaren Gruppe eingeschränkt. Im ersten Teil der Arbeit wurden dazu flüssigkristalline Substanzen eingesetzt. Durch Mischen von flüssigkristallinen Diacrylaten konnte eine Mesophase im gewünschten Temperaturintervall von 25 bis 35 °C erhalten werden. Der Einsatz dieser Flüssigkristalle zeigte einen positiven Einfluss auf den Polymerisationsschrumpf. Zudem wurden neue Monomere synthetisiert, deren Methacrylgruppe in direkter Nachbarschaft zum Mesogen angebunden wurde, um die Stabilität der erhaltenen Polymere zu erhöhen.Im zweiten Teil der Arbeit wurde die Beweglichkeit der polymerisierbaren Gruppe durch eine Fixierung an einem starren Kern reduziert. Als Grundkörper wurden Polyphenole, enzymatisch polymerisierte Phenole und ßCyclodextrin verwendet. Bei den modifizierten Polyphenolen auf Basis von Gallussäure und 3,5-Dihydroxybenzoesäure konnte eine leichte Reduzierung des Polymerisationsschrumpfes erreicht werden. Mit HRP (Horseradish Peroxidase) katalysierten enzymatisch polymerisierten Phenole konnte dagegen nicht photochemisch vernetzt werden, da diese Oligomere in Lösung gefärbt vorlagen. Zudem zeigten die freien, phenolischen Hydroxygruppen eine sehr geringe Reaktivität. Die besten Ergebnisse wurden mit modifizierten ßCyclodextrinen als Komponente einer Komposite erreicht. Dabei wurde in einem Fall sogar eine leichte Volumenexpansion während der Polymerisation erzielt.
Resumo:
Über viele Jahre hinweg wurden wieder und wieder Argumente angeführt, die diskreten Räumen gegenüber kontinuierlichen Räumen eine fundamentalere Rolle zusprechen. Unser Zugangzur diskreten Welt wird durch neuere Überlegungen der Nichtkommutativen Geometrie (NKG) bestimmt. Seit ca. 15Jahren gibt es Anstrengungen und auch Fortschritte, Physikmit Hilfe von Nichtkommutativer Geometrie besser zuverstehen. Nur eine von vielen Möglichkeiten ist dieReformulierung des Standardmodells derElementarteilchenphysik. Unter anderem gelingt es, auch denHiggs-Mechanismus geometrisch zu beschreiben. Das Higgs-Feld wird in der NKG in Form eines Zusammenhangs auf einer zweielementigen Menge beschrieben. In der Arbeit werden verschiedene Ziele erreicht:Quantisierung einer nulldimensionalen ,,Raum-Zeit'', konsistente Diskretisierungf'ur Modelle im nichtkommutativen Rahmen.Yang-Mills-Theorien auf einem Punkt mit deformiertemHiggs-Potenzial. Erweiterung auf eine ,,echte''Zwei-Punkte-Raum-Zeit, Abzählen von Feynman-Graphen in einer nulldimensionalen Theorie, Feynman-Regeln. Eine besondere Rolle werden Termini, die in derQuantenfeldtheorie ihren Ursprung haben, gewidmet. In diesemRahmen werden Begriffe frei von Komplikationen diskutiert,die durch etwaige Divergenzen oder Schwierigkeitentechnischer Natur verursacht werden könnten.Eichfixierungen, Geistbeiträge, Slavnov-Taylor-Identität undRenormierung. Iteratives Lösungsverfahren derDyson-Schwinger-Gleichung mit Computeralgebra-Unterstützung,die Renormierungsprozedur berücksichtigt.
Resumo:
Precision measurements of phenomena related to fermion mixing require the inclusion of higher order corrections in the calculation of corresponding theoretical predictions. For this, a complete renormalization scheme for models that allow for fermion mixing is highly required. The correct treatment of unstable particles makes this task difficult and yet, no satisfactory and general solution can be found in the literature. In the present work, we study the renormalization of the fermion Lagrange density with Dirac and Majorana particles in models that involve mixing. The first part of the thesis provides a general renormalization prescription for the Lagrangian, while the second one is an application to specific models. In a general framework, using the on-shell renormalization scheme, we identify the physical mass and the decay width of a fermion from its full propagator. The so-called wave function renormalization constants are determined such that the subtracted propagator is diagonal on-shell. As a consequence of absorptive parts in the self-energy, the constants that are supposed to renormalize the incoming fermion and the outgoing antifermion are different from the ones that should renormalize the outgoing fermion and the incoming antifermion and not related by hermiticity, as desired. Instead of defining field renormalization constants identical to the wave function renormalization ones, we differentiate the two by a set of finite constants. Using the additional freedom offered by this finite difference, we investigate the possibility of defining field renormalization constants related by hermiticity. We show that for Dirac fermions, unless the model has very special features, the hermiticity condition leads to ill-defined matrix elements due to self-energy corrections of external legs. In the case of Majorana fermions, the constraints for the model are less restrictive. Here one might have a better chance to define field renormalization constants related by hermiticity. After analysing the complete renormalized Lagrangian in a general theory including vector and scalar bosons with arbitrary renormalizable interactions, we consider two specific models: quark mixing in the electroweak Standard Model and mixing of Majorana neutrinos in the seesaw mechanism. A counter term for fermion mixing matrices can not be fixed by only taking into account self-energy corrections or fermion field renormalization constants. The presence of unstable particles in the theory can lead to a non-unitary renormalized mixing matrix or to a gauge parameter dependence in its counter term. Therefore, we propose to determine the mixing matrix counter term by fixing the complete correction terms for a physical process to experimental measurements. As an example, we calculate the decay rate of a top quark and of a heavy neutrino. We provide in each of the chosen models sample calculations that can be easily extended to other theories.
Resumo:
In this thesis cholesteric films made of liquid crystalline cellulose derivatives with improved optical properties were prepared. The choice of the solvent, hydrogen bond influencing additives, the synthetic realization of a very high degree of substitution on the cellulosic polymer and the use of mechanical stirring at the upper concentration limit of the liquid crystalline range were the basis for an improved alignment of the applied cellulose tricarbamates. In combination with a tuned substrate treatment and film preparation method, cholesteric films were obtained, with optical properties that were theoretically predicted and only known from low molecular weight liquid crystals so far. Subsequent polymerization allowed a permanent fixing of the alignment and the fabrication of free standing and insensitive films.rnThe incorporation of inorganic nanorods into the cholesteric host material was mediated with tailored block copolymers, available via controlled radical polymerization methods. In addition to the shape match between the rodlike mesogens of the host and the nanorods it was possible to increase the miscibility of both materials. Nevertheless, the size of the nanorods, in comparison to the mesogens, in these densely packed liquid crystalline phases as well as their long equilibration times were the reasons for phase separation. Nanorods are, in principle, valuable substitutes for organics, but their utilization in cellulosic CLC was not to be combined with a high quality alignment of the cholesteric structure.rnA swelling process of polymerized films in a dye solution or dissolving dyes in non-polymerized CLC was used for incorporation of the organic chromophores. With the first method the CLC could be aligned and polymerized without any disturbance due to dye molecules. The optical properties of dye and CLC were matched, with regard to mirrorless lasing devices. The dye was optically excited and laser emission supported by the cholesteric cavity was obtained. The polarization and wavelength of the emitted radiation as well as its bandwidth, the obtained interference pattern and threshold behavior of the emission proofed the feedback mechanism that was not believed to be realizable in liquid crystalline polymers. rnUtilization of a microfluidic co-flow injection device enabled us to transfer the properties of cellulosic CLC from the planar film shape to spherical micrometer sized particles. The pure material yielded particles with distorted mesogen alignment similar to films prepared by capillary flow. Dilution of the CLC with a solvent that migrated into the carrier phase during particle preparation provided the basis for particles with well ordered areas. rnAlthough cellulose derivatives were known for their liquid crystalline behavior for decades and synthesized in mass production, their application as feedback material was affected by bad optical properties. In comparison to low molar mass compounds, the low degree of order in the CLC phase was the cause. With the improved material, defined lasing emission was shown and characterized. Derivatives of cellulose are desirable materials, because, as a renewable resource, they are available in large amounts for a low price and need only simple derivatization reactions. The fabrication of CLC films with tunable lasing emission, for which this thesis can provide a starting point, is in good agreement with today's requirements of modern technology and its miniaturization.rn