3 resultados para Factory and trade waste.

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In spite of the higher toxicity of oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) than of their parent-PAHs, there are only a few studies of the concentrations, composition pattern, sources and fate of OPAHs in soil, the presumably major environmental sink of OPAHs. This is related to the fact that there are only few available methods to measure OPAHs together with PAHs in soil. rnThe objectives of my thesis were to (i) develop a GC/MS-based method to measure OPAHs and their parent-PAHs in soils of different properties and pollution levels, (ii) apply the method to soils from Uzbekistan and Slovakia and (iii) investigate into the fate of OPAHs, particularly their vertical transport in soilrnI optimized and fully evaluated an analytical method based on pressurized liquid extraction, silica gel column chromatographic fractionation of extracted compounds into alkyl-/parent-PAH and OPAH fractions, silylation of hydroxyl-/carboxyl-OPAHs with N,O-bis(trimethylsilyl)trifluoracetamide and GC/MS quantification of the target compounds. The method was targeted at 34 alkyl-/parent-PAHs, 7 carbonyl-OPAHs and 19 hydroxyl-/carboxyl-OPAHs. I applied the method to 11 soils from each of the Angren industrial region (which hosts a coal mine, power plant, rubber factory and gold refinery) in Uzbekistan and in the city of Bratislava, the densely populated capital of Slovakia.rnRecoveries of five carbonyl-OPAHs in spike experiments ranged between 78-97% (relative standard deviation, RSD, 5-12%), while 1,2-acenaphthenequinone and 1,4-naphtho-quinone had recoveries between 34-44%% (RSD, 19-28%). Five spiked hydroxyl-/carboxyl-OPAHs showed recoveries between 36-70% (RSD, 13-46%), while others showed recoveries <10% or were completely lost. With the optimized method, I determined, on average, 103% of the alkyl-/parent-PAH concentrations in a certified reference material.rnThe ∑OPAHs concentrations in surface soil ranged 62-2692 ng g-1 and those of ∑alkyl-/parent-PAHs was 842-244870 ng g-1. The carbonyl-OPAHs had higher concentrations than the hydroxyl-/carboxyl-OPAHs. The most abundant carbonyl-OPAHs were consistently 9-fluorenone (9-FLO), 9,10-anthraquinone (9,10-ANQ), 1-indanone (1-INDA) and benzo[a]anthracene-7,12-dione (7,12-B(A)A) and the most abundant hydroxyl-/carboxyl-OPAH was 2-hydroxybenzaldehyde. The concentrations of carbonyl-OPAHs were frequently higher than those of their parent-PAHs (e.g., 9-FLO/fluorene >100 near a rubber factory in Angren). The concentrations of OPAHs like those of their alkyl-/parent-PAHs were higher at locations closer to point sources and the OPAH and PAH concentrations were correlated suggesting that both compound classes originated from the same sources. Only for 1-INDA and 2-biphenylcarboxaldehyde sources other than combustion seemed to dominate. Like those of the alkyl-/parent-PAHs, OPAH concentrations were higher in topsoils than subsoils. Evidence of higher mobility of OPAHs than their parent-PAHs was provided by greater subsoil:topsoil concentration ratios of carbonyl-OPAHs (0.41-0.82) than their parent-PAHs (0.41-0.63) in Uzbekistan. This was further backed by the consistently higher contribution of more soluble 9-FLO and 1-INDA to the ∑carbonyl-OPAHs in subsoil than topsoil at the expense of 9,10-ANQ, 7,12-B(A)A and higher OPAH/parent-PAH concentration ratios in subsoil than topsoil in Bratislava.rnWith this thesis, I contribute a suitable method to determine a large number of OPAHs and PAHs in soil. My results demonstrate that carbonyl-OPAHs are more abundant than hydroxyl-/carboxyl-OPAHs and OPAH concentrations are frequently higher than parent-PAH concentrations. Furthermore, there are indications that OPAHs are more mobile in soil than PAHs. This calls for appropriate legal regulation of OPAH concentrations in soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methane is the most abundant reduced organic compound in the atmosphere. As the strongest known long-lived greenhouse gas after water vapour and carbon dioxide methane perturbs the radiation balance of Earth’s atmosphere. The abiotic formation of methane requires ultraviolet irradiation of organic matter or takes place in locations with high temperature and/or pressure, e.g. during biomass burning or serpentinisation of olivine, under hydrothermal conditions in the oceans deep or below tectonic plates. The biotic methane formation was traditionally thought to be formed only by methanogens under strictly anaerobic conditions, such as in wetland soils, rice paddies and agricultural waste. rnIn this dissertation several chemical pathways are described which lead to the formation of methane under aerobic and ambient conditions. Organic precursor compounds such as ascorbic acid and methionine were shown to release methane in a chemical system including ferrihydrite and hydrogen peroxide in aquatic solution. Moreover, it was shown by using stable carbon isotope labelling experiments that the thio-methyl group of methionine was the carbon precursor for the methane produced. Methionine, a compound that plays an important role in transmethylation processes in plants was also applied to living plants. Stable carbon isotope labelling experiments clearly verified that methionine acts as a precursor compound for the methane from plants. Further experiments in which the electron transport chain was inhibited suggest that the methane generation is located in the mitochondria of the plants. The abiotic formation of methane was shown for several soil samples. Important environmental parameter such as temperature, UV irradiation and moisture were identified to control methane formation. The organic content of the sample as well as water and hydrogen peroxide might also play a major role in the formation of methane from soils. Based on these results a novel scheme was developed that includes both biotic and chemical sources of methane in the pedosphere.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The world's rising demand of energy turns the development of sustainable and more efficient technologies for energy production and storage into an inevitable task. Thermoelectric generators, composed of pairs of n-type and p-type semiconducting materials, di¬rectly transform waste heat into useful electricity. The efficiency of a thermoelectric mate¬rial depends on its electronic and lattice properties, summarized in its figure of merit ZT. Desirable are high electrical conductivity and Seebeck coefficients, and low thermal con¬ductivity. Half-Heusler materials are very promising candidates for thermoelectric applications in the medium¬ temperature range such as in industrial and automotive waste heat recovery. The advantage of Heusler compounds are excellent electronic properties and high thermal and mechanical stability, as well as their low toxicity and elemental abundance. Thus, the main obstacle to further enhance their thermoelectric performance is their relatively high thermal conductivity.rn rnIn this work, the thermoelectric properties of the p-type material (Ti/Zr/Hf)CoSb1-xSnx were optimized in a multistep process. The concept of an intrinsic phase separation has recently become a focus of research in the compatible n-type (Ti/Zr/Hf)NiSn system to achieve low thermal conductivities and boost the TE performance. This concept is successfully transferred to the TiCoSb system. The phase separation approach can form a significant alternative to the previous nanostructuring approach via ball milling and hot pressing, saving pro¬cessing time, energy consumption and increasing the thermoelectric efficiency. A fundamental concept to tune the performance of thermoelectric materials is charge carrier concentration optimization. The optimum carrier concentration is reached with a substitution level for Sn of x = 0.15, enhancing the ZT about 40% compared to previous state-of-the-art samples with x = 0.2. The TE performance can be enhanced further by a fine-tuning of the Ti-to-Hf ratio. A correlation of the microstructure and the thermoelectric properties is observed and a record figure of merit ZT = 1.2 at 710°C was reached with the composition Ti0.25Hf0.75CoSb0.85Sn0.15.rnTowards application, the long term stability of the material under actual conditions of operation are an important issue. The impact of such a heat treatment on the structural and thermoelectric properties is investigated. Particularly, the best and most reliable performance is achieved in Ti0.5Hf0.5CoSb0.85Sn0.15, which reached a maximum ZT of 1.1 at 700°C. The intrinsic phase separation and resulting microstructure is stable even after 500 heating and cooling cycles.