34 resultados para FUNCTIONALIZED GRAPHENE
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Polystyrene latex particles modified at the surface with different hydrophilic functional groups were prepared by miniemulsion polymerization and applied to control the crystallization of zinc oxide in aqueous medium. The effects of both latex structure and concentration on the crystal growth, morphology, crystalline structure, and properties of the resulting zinc oxide were analyzed. Depending on the latex additive used, micro- and submicrosized crystals with a broad variety of morphologies were obtained. Among the studied latexes, the carboxyl-derived particles were shown to be a convenient system for further quantitative investigations. In this case, as the additive concentration increases, the aspect ratio of the crystals decreases systematically. Latex particles are assumed to adsorb preferentially onto the fast growing {001} faces of ZnO, interacting with the growth centers and reducing the growth rate in [001]. When zinc oxide is precipitated in the presence of latex, the polymer particles become incorporated into the growing crystals and polymer–inorganic hybrid materials are obtained. These materials are composed of an inorganic and largely undisturbed crystalline matrix in which organic latex particles are embedded. Increasing amounts of latex become incorporated into the growing crystals at increasing overall concentration in the crystallizing system. Photoluminescence (PL) spectra were measured to obtain information on defect centers. Emission spectra of all samples showed a narrow UV peak and a broad band in the green-yellow spectral region. The former emission is attributed to exciton recombination, whereas the latter seems to be related with deep-level donors. Latex appears to be a quencher of the visible emission of zinc oxide. Thus, compared to pure zincite, ZnO–latex hybrid materials show a significantly lower PL intensity in the visible range of the spectrum. Under continuous photoexcitation, a noticeable dynamic behavior of the PL is observed, which can be related to a photodesorption of adsorbed oxygen. These surface-adsorbed oxygen species seem to play a crucial role for the optical properties of the materials and may mediate the tunneling of electrons from the conduction band to preexisting deep-level traps, probably related to intrinsic defects (oxygen vacancies or interstitial zinc). The polymer particles can block the sites where oxygen adsorbs, and the disappearance of the “electron-shuttle” species leads to the observed quenching of the visible emission. Electron paramagnetic resonance (EPR) provided additional information about crystal defects with unpaired electrons. Spectra of all samples exhibit a single signal at g ≈ 1.96, typical for shallow donors. Contrary to the results of other authors, no correlation was possible between the EPR signal and the visible range of PL spectra, which suggests that centers responsible for the visible emission and the EPR signal are different.
Resumo:
Calix[4]arenes with urea functions attached to the p-positions of the phenolic units usually form dimers in apolar solvents. Tetraureas functionalized by pyridyl and carboxyl groups form dimers only with bis- or tetraloop tetraureas. This heterodimerization was used for the synthesis of a bis-[3]catenane. Tetraureas functionalized with sulfide functions were synthesized for the preparation of monolayers from the dimeric capsules containing electrochemically active guests on gold. Bis-tetraureacalix[4]arenes singly-linked via their wide rim by rigid spacers were synthesized and their self-assembly to polymers in apolar solvents was proved by the 1H NMR spectroscopy and AFM studies. Dimerization of the first example of the tetraurea calix[4]arenes bridged in 1,3-positions at the narrow rim was proved by 1H NMR spectroscopy. Calix[8]arenes functionalized by urea, amido or naphthalimido groups at their p-positions self-assemble to columnar structures by hydrogen bonding or by π-π-stacking.
Resumo:
Nature leads, we follow. But nanotechnologists are in hot pursuit, in designing controllable structures that can mimic naturally occurring and artificially synthesized materials on a common platform. The supramolecular chemistry concerns the investigation of nature principles to produce fascinating complexed and functional molecular assemblies, as well as the utilization of these principles to generate novel devices and materials, potentially useful for sensing, catalysis, transport and other applications in medical or engineering science. The work presented in this thesis is a compilation of different synthetic methods to achieve inorganic-organic hybrid nanomaterials. Silicatein, a protein enzyme, which acts both as a catalyst and template for the formation of silica needles in marine sponges, has been used for the biosynthesis of semiconductor metal oxides on surfaces. Silicatein was immobilized on gold (111) surfaces using alkane thiol, as well as on a novel self-assembly of NTA on top of a “cushion” of reactive ester polymer has been successfully employed to make functionalised surfaces. The immobilization of silicatein on surfaces was monitored by surface plasmon spectroscopy, atomic force microscopy and confocal laser scanning microscopy. Surface bound silicatein retains its biocatalytic activity, which was demonstrated by monitoring its hydrocatalytic activity to catalyse the synthesis of biosilica, biotitania, and biozirconia. The synthesis of semiconductor metal oxides was characterized using scanning electron microscopy. This hydrolytic biocatalyst is used to synthesize the gold nanoparticles. The gold nanoparticles are formed by reduction of tetrachloroaurate, AuCl4-, by the action of sulfhydryl groups hidden below the surface groups of the protein. The resulting gold nanoparticles which are stabilized by surface bound silicatein further aggregate to form Au nanocrystals. The shape of the nanocrystals obtained by using recombinant silicatein is controlled through chiral induction by the protein during the nucleation of the nanocrystals. As an extension of this work, TiO2 nanowires were functionalized using polymeric ligand which incorporates the nitrilotriacetic acid (NTA) linker in the back bone to immobilize His-tagged silicatein onto the TiO2 nanowires. The surface bound protein not only retains its original hydrolytic properties, but also acts as a reductant for AuCl4- in the synthesis of hybrid TiO2/silicatein/Au nanocomposites. Functionalized, monocrystalline rutile TiO2 nanorods were prepared from TiCl4 in aqueous solution in the presence of dopamine. The surface bound organic ligand controls the morphology as well as the crystallinity and the phase selection of TiO2. The surface amine groups can be tailored further with functional molecules such as dyes. As an example, this surface functionality is used for the covalent binding of a fluorescent dye,4-chloro-7- nitrobenzylurazene (NBD) to the TiO2 nanorods. The polymeric ligands have been used successfully for the in-situ and post-functionalization of TiO2 nanoparticles. Besides to chelating dopamine anchor group the multifunctional ligand system presented here incorporates a modifier molecule which allows the binding of functional molecules (here the dyes pyrene, NBD, and Texas Red) as well as additional entities which allow tailoring the solubility of inorganic nanocrystals in different solvents. A novel method for the surface functionalization of fullerene-type MoS2 nanoparticles and subsequently binding these nanoparticles onto TiO2 nanowires has been reported using polymeric ligands. The procedure involves the complexation of IF-MoS2 with a combination of Ni2+ via an umbrella-type nitrilotriacetic acid (NTA) and anchoring them to the sidewalls of TiO2 nanowires utilizing the hydroxyl groups of dopamine present in the main contents of polymeric ligand. A convenient method for the synthesis of Au/CdS nanocomposites has been presented, which were achieved through the novel method of thiol functionalization of gold colloids. The thermodynamically most stable phase of ZrO2 (cubic) has been obtained at much lower temperature (180°C). These nanoparticles are highly blue fluorescent, with a high surface area.
Resumo:
Diese Arbeit beschäftigt sich mit der Polymerfunktionalisierung formanisotroperrnNanopartikel wie TiO2 Nanostäbchen oder Kohlenstoff Nanoröhren. Dies dient derrnSolubilisierung und sterischen Stabilisierung in organischen Medien, da diesernionenfrei hergestellt werden können, was eine Nutzung für nanoskopische,rnelektrische Schaltkreise ermöglicht. Die Polymere wurden mittels der RAFTrn(reversible addition-fragmentation chain transfer) Polymerisation mit engenrnMolekulargewichtsverteilungen hergestellt. Im Detail wurden Ankergruppen inrnBlockcopolymere und an der Alphaposition eingeführt, welche eine Anbindung an diernNanopartikeloberfläche ermöglichen. Die Polymere wurden durch Variation derrnverschiedenen Blocklängen für eine bestmögliche Adsorption optimiert. Die sorngewonnenen Polymer funktionalisierten Nanopartikel zeigten eine gute Löslichkeit inrnorganischen Medien und zeigten zudem eine lyotropes, flüssigkristallinesrnPhasenverhalten. Dies war aufgrund der Formanisotropie zu erwarten, zeigte jedochrnebenfalls ein unerwartetes thermotropes Verhalten, welches durch die Polymerhüllernerzeugt wurde. Die Flüssigkristalle wurden eingehend mittels polarisierterrnMikroskopie und Differential Scanning Calorimetry (DSC) untersucht. Diernflüssigkristallinen Phasen aus Nanostäbchen und –röhren wurde dann zurrnOrientierung der anisotropen Nanopartikel benutzt und es konnten makroskopischrngeordnete Proben hergestellt werden. Die Polymerhülle um die Nanopartikelrnermöglichte es ebenfalls diese in Polymerfilme einzuarbeiten und sornNanopartikelverstärkte Kunststoffe herzustellen.
From amphiphilic block copolymers to ferrocenyl-functionalized polymers for biosensoric applications
Resumo:
The present thesis can be divided in three main parts. In all parts new polymer architecturesrnwere synthesized and characterized concerning their special features.rnThe first part will emphasize the advantage of a polystyrene-block-(hyperbranchedrnpolyglycerol) copolymer in comparison to an analogue polystyrene-block-(linear polyglycerol)rncopolymer. Therefore a synthethic route to prepare linear block copolymersrnhas been developed. Two strategies were examined. One strategy was based on thernclassic, sequential anionic polymerization; the second strategy was based on arn“Click-Chemistry” coupling reaction. In a following step glycidol was hypergraftedrnfrom these block copolymers by applying a hypergrafting reaction with glycidol. Thernbehavior of the amphiphilic block copolymers synthesized was studied in differentrnsolvents. Furthermore the polarity of the solvent was changed to form the correspondingrninverse micelles. DLS, SLS, SEC-MALLS-VISCO, AFM and Cyro TEMrnmeasurements were performed to obtain a visual image from the appearance of thernaggregates. It was found that a linear-hyperbranched architecture is necessary, ifrnwell defined, monodisperse aggregates are required, e.g. for the preparation of orderedrnnanoarrays. Linear-linear block copolymers formed only polydisperse aggregates.rnAdditionally it was found that size distribution could be improved dramaticallyrnby passing the aggregates through a SEC column with large pores. The SEC columnsrnacted like a template in which the aggregates adopt a more stable conformation.rnIn the second part anionic polymerization was employed to synthesize silaneendfunctionalizedrnmacromonomers with different molecular weights based on polybutadienernand polyisoprene. These were polymerized by a hydrosilylation reaction inrnbulk to obtain branched polymers, using Karstedt’s catalyst. Surprisingly the additionrnof monofunctional silanes during the polymerization had only a minimal effect concerningrnthe degree of polymerization. It was possible to introduce silanes without increasingrnthe overall number of reaction steps by a very convenient “pseudo-copolymerization”rnmethod. All branched polymers were analyzed by SEC, SEC-MALLS,rnSEC-viscometry, 1H-NMR-spectroscopy and DSC concerning their branching ratio.rnThe branching parameters for the branched polymers exhibited similar characteristicsrnas hyperbranched polymers based on AB2 monomers. Detailed kinetic study showedrnthat the polymerization occurred very rapidly in comparison to the hydrosilylation polymerizationrnof classical AB2 type carbosilanes monomers.rnThe last part will deal with ferrocenyl-functionalized polymers. On the one hand,rnferrocenyl-functionalized polyglycerols (PG) were studied. Esterification of PGs withrndifferent molecular weight using ferrocenemonocarboxylic acid gave the ferrocenylrnfuntionalized polymers in high yields. On the other hand three different block copolymersrnwere prepared with different ratios of styrene to butadiene units (10:1, 4:1, 2:1).rnThe double bonds of the 1,2-PB block were hydrosilylated using silanes bearing onern(HSiMe2Fc) or two (HSiMeFc2) ferrocene units. High degrees of functionalizationrnwere obtained (up to 83 %). In this manner, six different ferrocenyl-rich block copolymersrnwith different fractions of ferrocene were prepared and analyzed, employingrnNMR-spectroscopy, SEC, SEC/MALLS/viscometry, DLS and cyclic voltammetry. Thernredox properties of the studied polymers varied primarily with the nature of the silanernunit attached. Additionally, the redox properties in solution of the studied polymersrnwere influenced by the block length ratio of the block copolymers. Unexpectedly, withrnincreasing block length of the ferrocenyl block the fraction of active ferrocenes decreased.rnNevertheless, in case of thin monolayer films this behaviour was not observed.rnAll polymers (PG and PS-b-PB based) exhibited good electrochemical propertiesrnin a wide range of solvents, which rendered them very interesting for biosensoricrnapplications.
Resumo:
Im Rahmen dieser Arbeit wurden neuartige funktionale Nanographene synthetisiert und hinsichtlich ihrer strukturellen und elektronischen Eigenschaften charakterisiert. Basierend auf dem Strukturmotiv des Graphens konnten anellierte polyzyklische aromatische Kohlenwasserstoffe (PAKs) mit unterschiedlichen Seitenverhältnissen strukturdefiniert erhalten und gezielt in der Peripherie funktionalisiert werden. Basierend auf dem Synthesekonzept einer „Vorplanarisierung“ konnten Nanographen-Scheiben mit einem Durchmesser von bis zu 3 nm in hoher Reinheit erhalten werden. Durch die Entwicklung von Polyphenylen-Vorläufern mit einem gewinkelten Rückgrat konnten erstmals defektfreie und lösliche Nanographen-Streifen (GNRs) mit Breiten von 1,0 - 2,1 nm und Längen von über 40 nm synthetisiert werden.rnrnAm Hexa-peri-hexabenzocoronen (HBC) war es möglich, durch die Einführung kurzer linearer Alkylreste in der Peripherie den inter- und intrakolumnaren Abstand nach Selbstorganisation zu reduzieren. In Mischungen mit Perylentetracarboxydiimid (PDI) als Akzeptor konnte durch eine erhöhte Dichte und eine verbesserte Ladungsträgermobilität eine relative Steigerung der Effizienz von Donor-Akzeptor-Heteroübergangs-Solarzellen um 9 % erreicht werden. Eine kovalente Verknüpfung von HBC und PDI erlaubte hier die vollständige Kontrolle der supramolekularen Organisation, des Phasenverhaltens sowie des Abstandes zwischen Donor und Akzeptor.rnrnBasierend auf den im Rahmen dieser Arbeit entwickelten Synthesekonzepten, eröffnen sich nun zahlreiche Möglichkeiten zur Entwicklung weiterer Nanographene, die entsprechend der gewünschten Anwendung funktionalisiert werden können und ein besseres Verständnis der Eigenschaften graphenartiger Materialien erlauben werden.
Resumo:
Diese Arbeit hat viele beispiellose synthetische Ansätze für neuartige Verbundwerkstoffe Graphen-und stickstoffhaltigen graphitischen Materialien erforscht. Die erhaltenen Materialien wurden als den transparenten Elektroden der Solarzellen, die freistehenden Elektroden mit verbesserter mechanischer Festigkeit, und die Kathoden der Brennstoffzellen der Sauerstoffreduktion aufgebracht.rnAlle Ergebnisse haben eindeutig das große Potenzial von Graphen basierenden Materialien und stickstoffhaltigen graphitische Kohlenstoffe als neuartige Elektrodenmaterialien für neue Energie-Geräten demonstriert.
Resumo:
Friend murine leukemia Virus (FV) infection of immunocompetent mice is a well- established model to acquire further knowledge about viral immune suppression mechanisms, with the aim to develop therapeutics against retrovirus-induced diseases. Interestingly, BALB/c mice are infected by low doses of FV and die from FV-induced erythroleukemia, while C57/BL6 mice are infected by FV only at high viral dose, and remain persistently infected for their whole life. Due to the central role of dendritic cells (DC) in the induction of anti-viral responses, we asked for their functional role in the genotype-dependent sensitivity towards FV infection. In my PhD study I showed that bone marrow (BM)-derived DC differentiated from FV-infected BM cells obtained from FV-inoculated BALB/c (FV susceptible) and C57BL/6 (FV resistant) mice showed an increased endocytotic activity and lowered expression of MHCII and of costimulatory receptors as compared with non-infected control BMDC. FV-infected BMDC from either mouse strain were partially resistant towards stimulation-induced upregulation of MHCII and costimulators, and accordingly were poor T cell stimulators in vitro and in vivo. In addition, FV-infected BMDC displayed an altered expression profile of proinflammator cytokines and favoured Th2 polarization. Ongoing work is focussed on elucidating the functional role of proteins identified as differentially expressed in FV-infected DC in a genotype-dependent manner, which therefore may contribute to the differential course of FV infection in vivo in BALB/c versus C57BL/6 mice. So far, more than 300 proteins have been identified which are differently regulated in FV-infected vs. uninfected DC from both mouse strains. One of these proteins, S100A9, was strongly upregulated specifically in BMDC derived from FV-infected C57BL/6 BM cells. S100A9-/- mice were more sensitive towards inoculation with FV than corresponding wild type (WT) mice (both C57BL/6 background), which suggests a decisive role of this factor for anti-viral defense. In addition, FV-infected S100A9-/- BMDC showed lower motility than WT DC. The future work is aimed to further elucidate the functional importance of S100A9 for DC functions. To exploit the potential of DC for immunotherapeutic applications, in another project of this PhD study the usability of different types of functionalized nanoparticles
Resumo:
Graphene nanoribbons (GNRs), which are defined as nanometer-wide strips of graphene, are attracting an increasing attention as one on the most promising materials for future nanoelectronics. Unlike zero-bandgap graphene that cannot be switched off in transistors, GNRs possess open bandgaps that critically depend on their width and edge structures. GNRs were predominantly prepared through “top-down” methods such as “cutting” of graphene and “unzipping” of carbon nanotubes, but these methods cannot precisely control the structure of the resulting GNRs. In contrast, “bottom-up” chemical synthetic approach enables fabrication of structurally defined and uniform GNRs from tailor-made polyphenylene precursors. Nevertheless, width and length of the GNRs obtainable by this method were considerably limited. In this study, lateral as well as longitudinal extensions of the GNRs were achieved while preserving the high structural definition, based on the bottom-up solution synthesis. Initially, wider (~2 nm) GNRs were synthesized by using laterally expanded monomers through AA-type Yamamoto polymerization, which proved more efficient than the conventional A2B2-type Suzuki polymerization. The wider GNRs showed broad absorption profile extending to the near-infrared region with a low optical bandgap of 1.12 eV, which indicated a potential of such GNRs for the application in photovoltaic cells. Next, high longitudinal extension of narrow (~1 nm) GNRs over 600 nm was accomplished based on AB-type Diels–Alder polymerization, which provided corresponding polyphenylene precursors with the weight-average molecular weight of larger than 600,000 g/mol. Bulky alkyl chains densely installed on the peripheral positions of these GNRs enhanced their liquid-phase processability, which allowed their formation of highly ordered self-assembled monolayers. Furthermore, non-contact time-resolved terahertz spectroscopy measurements demonstrated high charge-carrier mobility within individual GNRs. Remarkably, lateral extension of the AB-type monomer enabled the fabrication of wider (~2 nm) and long (>100 nm) GNRs through the Diels–Alder polymerization. Such longitudinally extended and structurally well-defined GNRs are expected to allow the fabrication of single-ribbon transistors for the fundamental studies on the electronic properties of the GNRs as well as contribute to the development of future electronic devices.
Resumo:
Graphene, the thinnest two-dimensional material possible, is considered as a realistic candidate for the numerous applications in electronic, energy storage and conversion devices due to its unique properties, such as high optical transmittance, high conductivity, excellent chemical and thermal stability. However, the electronic and chemical properties of graphene are highly dependent on their preparation methods. Therefore, the development of novel chemical exfoliation process which aims at high yield synthesis of high quality graphene while maintaining good solution processability is of great concern. This thesis focuses on the solution production of high-quality graphene by wet-chemical exfoliation methods and addresses the applications of the chemically exfoliated graphene in organic electronics and energy storage devices.rnPlatinum is the most commonly used catalysts for fuel cells but they suffered from sluggish electron transfer kinetics. On the other hand, heteroatom doped graphene is known to enhance not only electrical conductivity but also long term operation stability. In this regard, a simple synthetic method is developed for the nitrogen doped graphene (NG) preparation. Moreover, iron (Fe) can be incorporated into the synthetic process. As-prepared NG with and without Fe shows excellent catalytic activity and stability compared to that of Pt based catalysts.rnHigh electrical conductivity is one of the most important requirements for the application of graphene in electronic devices. Therefore, for the fabrication of electrically conductive graphene films, a novel methane plasma assisted reduction of GO is developed. The high electrical conductivity of plasma reduced GO films revealed an excellent electrochemical performance in terms of high power and energy densities when used as an electrode in the micro-supercapacitors.rnAlthough, GO can be prepared in bulk scale, large amount of defect density and low electrical conductivity are major drawbacks. To overcome the intrinsic limitation of poor quality of GO and/or reduced GO, a novel protocol is extablished for mass production of high-quality graphene by means of electrochemical exfoliation of graphite. The prepared graphene shows high electrical conductivity, low defect density and good solution processability. Furthermore, when used as electrodes in organic field-effect transistors and/or in supercapacitors, the electrochemically exfoliated graphene shows excellent device performances. The low cost and environment friendly production of such high-quality graphene is of great importance for future generation electronics and energy storage devices. rn
Resumo:
Hybrid Elektrodenmaterialien (HEM) sind der Schlüssel zu grundlegenden Fortschritten in der Energiespeicherung und Systemen zur Energieumwandlung, einschließlich Lithium-Ionen-Batterien (LiBs), Superkondensatoren (SCs) und Brennstoffzellen (FCs). Die faszinierenden Eigenschaften von Graphen machen es zu einem guten Ausgangsmaterial für die Darstellung von HEM. Jedoch scheitern traditionelle Verfahren zur Herstellung von Graphen-HEM (GHEM) scheitern häufig an der fehlenden Kontrolle über die Morphologie und deren Einheitlichkeit, was zu unzureichenden Grenzflächenwechselwirkungen und einer mangelhaften Leistung des Materials führt. Diese Arbeit konzentriert sich auf die Herstellung von GHEM über kontrollierte Darstellungsmethoden und befasst sich mit der Nutzung von definierten GHEM für die Energiespeicherung und -umwandlung. Die große Volumenausdehnung bildet den Hauptnachteil der künftigen Lithium-Speicher-Materialien. Als erstes wird ein dreidimensionaler Graphen Schaumhybrid zur Stärkung der Grundstruktur und zur Verbesserung der elektrochemischen Leistung des Fe3O4 Anodenmaterials dargestellt. Der Einsatz von Graphenschalen und Graphennetzen realisiert dabei einen doppelten Schutz gegen die Volumenschwankung des Fe3O4 bei dem elektrochemischen Prozess. Die Leistung der SCs und der FCs hängt von der Porenstruktur und der zugänglichen Oberfläche, beziehungsweise den katalytischen Stellen der Elektrodenmaterialien ab. Wir zeigen, dass die Steuerung der Porosität über Graphen-basierte Kohlenstoffnanoschichten (HPCN) die zugängliche Oberfläche und den Ionentransport/Ladungsspeicher für SCs-Anwendungen erhöht. Desweiteren wurden Stickstoff dotierte Kohlenstoffnanoschichten (NDCN) für die kathodische Sauerstoffreduktion (ORR) hergestellt. Eine maßgeschnittene Mesoporosität verbunden mit Heteroatom Doping (Stickstoff) fördert die Exposition der aktiven Zentren und die ORR-Leistung der metallfreien Katalysatoren. Hochwertiges elektrochemisch exfoliiertes Graphen (EEG) ist ein vielversprechender Kandidat für die Darstellung von GHEM. Allerdings ist die kontrollierte Darstellung von EEG-Hybriden weiterhin eine große Herausforderung. Zu guter Letzt wird eine Bottom-up-Strategie für die Darstellung von EEG Schichten mit einer Reihe von funktionellen Nanopartikeln (Si, Fe3O4 und Pt NPs) vorgestellt. Diese Arbeit zeigt einen vielversprechenden Weg für die wirtschaftliche Synthese von EEG und EEG-basierten Materialien.
Resumo:
Nanopartikel durch Strukturfixierung mizellarer Assoziate aus amphiphilen, endgruppenfunktionalisierten Diblockcopolymeren Zwei unterschiedliche Diblockcopolymersysteme mit Molmassen unterhalb von Mw = 10 000 g/mol wurden über anionische Polymerisation synthetisiert. Ein hetero-telecheles a,w-Poly(dimethylsiloxan)-b-Poly(ethylenoxid) (PDMS-PEO) Diblockcopolymer wurde mit einer Methacrylatendgruppe am PDMS und entweder einer Benzyl-, Hydroxy- oder Carboxylatendgruppe am PEO funktionalisiert. Ein Poly(butadien)-b-Poly(ethylenoxid) (PB-PEO) Diblockcopolymer wurde am PEO ebenfalls entweder mit einer Benzyl-, Hydroxy- oder Carboxylatendgruppe funktionalisiert. In selektiven Lösungsmitteln wie Wasser oder Methanol bilden beide Diblockcopolymersysteme supramolekulare Strukturen mit sphärischer, zylindrischer oder toroider Geometrie aus, die mit statischer und dynamischer Lichtstreuung in Lösung und mit Rasterkraftmikroskopie (AFM) und Transmissionselektronenmikroskopie (TEM) auf der Oberfläche untersucht wurden. Durch Zusatz eines Vernetzers und Initiators wurden die selbstassoziierenden Mizellen des PDMS-PEO Diblockcopolymers permanent durch radikalische Polymerisation mit UV-Licht fixiert. Mizellen des PB-PEO Diblockcopolymers wurden über Bestrahlung mit gamma-Strahlen permanent fixiert. Die Untersuchung der resultierenden Nanopartikel beider Diblockcopolymersysteme mit AFM und TEM zeigte, daß diese sogar in nicht selektiven Lösungsmitteln wie Tetrahydrofuran formstabil bleiben.
Resumo:
Die Synthese funktionalisierter Polyorganosiloxan-µ-Netzwerke (Rh = 5 30 nm) gelingt durch Polycokondensation von Alkoxysilanen. Die entstehenden sphärischen Teilchen sind in unpolaren organischen Lösungsmitteln partikulär dispergierbar. Durch die sequentielle Zugabe der Silanmonomere können Kern-Schale-Partikel mit unterschiedlichen Teilchenarchitekturen realisiert werden. In der vorliegenden Arbeit wird p-Chlormethylphenyltrimethoxysilan als funktionalisiertes Monomer verwendet, um den µ-Netzwerken durch eine anschließende Quaternisierung der Chlorbenzylgruppen mit Dimethylaminoethanol amphiphile Eigenschaften zu verleihen. Durch den Kern-Schale-Aufbau der Partikel sind die hydrophilen Bereiche im Kugelinneren von der hydrophoben äußeren Schale separiert, was unerläßlich für die Verwendung der Partikel zur Verkapselung wasserlöslicher Substanzen ist.So können in den amphiphilen µ-Netzwerken beispielsweise wasserlösliche Farbstoffe verkapselt werden. Diese diffundieren sowohl aus Lösung als auch aus dem Festkörper in das geladene Partikelinnere und werden dort angereichert. Es wird eine Abhängigkeit der Farbstoffbeladung vom Quaternisierungsgrad gefunden, wobei die Anzahl an verkapselten Farbstoffmolekülen mit dem Quaternisierungsgrad zunimmt.Weiterhin können amphiphile µ-Gelpartikel auch als molekulare Nanoreaktoren zur Synthese von Edelmetallkolloiden verwendet werden, die in den Netzwerken topologisch gefangen sind. Hierzu werden zuerst Metallionen im Kugelinneren verkapselt und anschließend reduziert, wobei das Kolloidwachstum durch den wohldefinierten Reaktionsraum gesteuert wird. Neben Gold- und Palladiumkolloiden können auf diese Weise beispielsweise auch Silberkolloide in den Kernen von µ-Netzwerken hergestellt werden.
Resumo:
Zusammenfassung: Es sollten zum einen strukturell fixierte, perlenkettenartige Polyelektrolyte dargestellt werden. Dazu wurde lineares Poly-2-vinylpyridin(PVP) mit vinylfunktionalisierten, hydrophoben Quaternisierungsagentien zu einer Polyseife umgesetzt. Bei der Quaternisierungsreaktion ließ sich der Gehalt an hydrophoben Gruppen variieren, wodurch Polyseifen mit unterschiedlichen Ladungsdichten zugänglich wurden. Trotz vielfältiger Versuche war es dennoch nicht möglich, eine polymerisationsfähige Polyseife herzustellen, welche in wäßriger Lösung intramolekular micellisiert und die Überstruktur einer Perlenkette annimmt. Durch die Herstellung hochreiner PVP-Makromonomere konnten zylindrische Bürsten hergestellt werden. Durch Umsetzung der PVP-Bürsten mit Methyltosylat sind unter milden Reaktionsbedingungen nahezu vollständig umgesetzte positiv geladene Polyelektrolyte zugänglich. Durch eine Sulfonierung von Polystyrol-Polymakromonomeren wurden negativ geladene zylindrische Polyelektrolyte erhalten.Das Verhalten dieser Polyelektrolyte in verdünnter wäßriger Lösung wurde mit der statischen und der dynamischen Lichtstreuung untersucht. Dabei deuten die statischen Messungen darauf hin, daß deren Verhalten in verdünnter wäßriger Lösung maßgeblich durch die osmotische Aktivität der Gegenionen bestimmt wird.Durch eine Quaternisierung der PVP-Bürsten mit langkettigen Reagentien konnten hochverzweigte Polyelektrolytarchitekturen hergestellt werden. Dabei läßt sich die Tatsache, daß eine Quaternisierung mit solchen Reagentien einen nur unwesentlichen Einfluß auf die Struktur der Bürste hat, nicht durch einfache Überlegungen erklären. Dennoch scheinen die langkettigen Seitenketten die Ausbildung geordneter Strukturen innerhalb von Domänen an der Oberfläche zu induzieren.