2 resultados para FREEZING CURVES

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Im Rahmen dieser Arbeit wurden Computersimulationen von Keimbildungs- und Kris\-tallisationsprozessen in rnkolloidalen Systemen durchgef\"uhrt. rnEine Kombination von Monte-Carlo-Simulationsmethoden und der Forward-Flux-Sampling-Technik wurde rnimplementiert, um die homogene und heterogene Nukleation von Kristallen monodisperser Hart\-kugeln zu untersuchen. rnIm m\"a\ss{ig} unterk\"uhlten Bulk-Hartkugelsystem sagen wir die homogenen Nukleationsraten voraus und rnvergleichen die Resultate mit anderen theoretischen Ergebnissen und experimentellen Daten. rnWeiterhin analysieren wir die kristallinen Cluster in den Keimbildungs- und Wachstumszonen, rnwobei sich herausstellt, dass kristalline Cluster sich in unterschiedlichen Formen im System bilden. rnKleine Cluster sind eher l\"anglich in eine beliebige Richtung ausgedehnt, w\"ahrend gr\"o\ss{ere} rnCluster kompakter und von ellipsoidaler Gestalt sind. rn rnIm n\"achsten Teil untersuchen wir die heterogene Keimbildung an strukturierten bcc (100)-W\"anden. rnDie 2d-Analyse der kristallinen Schichten an der Wand zeigt, dass die Struktur der rnWand eine entscheidende Rolle in der Kristallisation von Hartkugelkolloiden spielt. rnWir sagen zudem die heterogenen Kristallbildungsraten bei verschiedenen \"Ubers\"attigungsgraden voraus. rnDurch Analyse der gr\"o\ss{ten} Cluster an der Wand sch\"atzen wir zus\"atzlich den Kontaktwinkel rnzwischen Kristallcluster und Wand ab. rnEs stellt sich heraus, dass wir in solchen Systemen weit von der Benetzungsregion rnentfernt sind und der Kristallisationsprozess durch heterogene Nukleation stattfindet. rn rnIm letzten Teil der Arbeit betrachten wir die Kristallisation von Lennard-Jones-Kolloidsystemen rnzwischen zwei ebenen W\"anden. rnUm die Erstarrungsprozesse f\"ur ein solches System zu untersuchen, haben wir eine Analyse des rnOrdnungsparameters f\"ur die Bindung-Ausrichtung in den Schichten durchgef\"urt. rnDie Ergebnisse zeigen, dass innerhalb einer Schicht keine hexatische Ordnung besteht, rnwelche auf einen Kosterlitz-Thouless-Schmelzvorgang hinweisen w\"urde. rnDie Hysterese in den Erhitzungs-Gefrier\-kurven zeigt dar\"uber hinaus, dass der Kristallisationsprozess rneinen aktivierten Prozess darstellt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis provides efficient and robust algorithms for the computation of the intersection curve between a torus and a simple surface (e.g. a plane, a natural quadric or another torus), based on algebraic and numeric methods. The algebraic part includes the classification of the topological type of the intersection curve and the detection of degenerate situations like embedded conic sections and singularities. Moreover, reference points for each connected intersection curve component are determined. The required computations are realised efficiently by solving quartic polynomials at most and exactly by using exact arithmetic. The numeric part includes algorithms for the tracing of each intersection curve component, starting from the previously computed reference points. Using interval arithmetic, accidental incorrectness like jumping between branches or the skipping of parts are prevented. Furthermore, the environments of singularities are correctly treated. Our algorithms are complete in the sense that any kind of input can be handled including degenerate and singular configurations. They are verified, since the results are topologically correct and approximate the real intersection curve up to any arbitrary given error bound. The algorithms are robust, since no human intervention is required and they are efficient in the way that the treatment of algebraic equations of high degree is avoided.