7 resultados para Exciton of wannier-mott

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis reports on the realization, characterization and analysis of ultracold bosonic and fermionic atoms in three-dimensional optical lattice potentials. Ultracold quantum gases in optical lattices can be regarded as ideal model systems to investigate quantum many-body physics. In this work interacting ensembles of bosonic 87Rb and fermionic 40K atoms are employed to study equilibrium phases and nonequilibrium dynamics. The investigations are enabled by a versatile experimental setup, whose core feature is a blue-detuned optical lattice that is combined with Feshbach resonances and a red-detuned dipole trap to allow for independent control of tunneling, interactions and external confinement. The Fermi-Hubbard model, which plays a central role in the theoretical description of strongly correlated electrons, is experimentally realized by loading interacting fermionic spin mixtures into the optical lattice. Using phase-contrast imaging the in-situ size of the atomic density distribution is measured, which allows to extract the global compressibility of the many-body state as a function of interaction and external confinement. Thereby, metallic and insulating phases are clearly identified. At strongly repulsive interaction, a vanishing compressibility and suppression of doubly occupied lattice sites signal the emergence of a fermionic Mott insulator. In a second series of experiments interaction effects in bosonic lattice quantum gases are analyzed. Typically, interactions between microscopic particles are described as two-body interactions. As such they are also contained in the single-band Bose-Hubbard model. However, our measurements demonstrate the presence of multi-body interactions that effectively emerge via virtual transitions of atoms to higher lattice bands. These findings are enabled by the development of a novel atom optical measurement technique: In quantum phase revival spectroscopy periodic collapse and revival dynamics of the bosonic matter wave field are induced. The frequencies of the dynamics are directly related to the on-site interaction energies of atomic Fock states and can be read out with high precision. The third part of this work deals with mixtures of bosons and fermions in optical lattices, in which the interspecies interactions are accurately controlled by means of a Feshbach resonance. Studies of the equilibrium phases show that the bosonic superfluid to Mott insulator transition is shifted towards lower lattice depths when bosons and fermions interact attractively. This observation is further analyzed by applying quantum phase revival spectroscopy to few-body systems consisting of a single fermion and a coherent bosonic field on individual lattice sites. In addition to the direct measurement of Bose-Fermi interaction energies, Bose-Bose interactions are proven to be modified by the presence of a fermion. This renormalization of bosonic interaction energies can explain the shift of the Mott insulator transition. The experiments of this thesis lay important foundations for future studies of quantum magnetism with fermionic spin mixtures as well as for the realization of complex quantum phases with Bose-Fermi mixtures. They furthermore point towards physics that reaches beyond the single-band Hubbard model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thema dieser Arbeit ist die Entwicklung und Kombination verschiedener numerischer Methoden, sowie deren Anwendung auf Probleme stark korrelierter Elektronensysteme. Solche Materialien zeigen viele interessante physikalische Eigenschaften, wie z.B. Supraleitung und magnetische Ordnung und spielen eine bedeutende Rolle in technischen Anwendungen. Es werden zwei verschiedene Modelle behandelt: das Hubbard-Modell und das Kondo-Gitter-Modell (KLM). In den letzten Jahrzehnten konnten bereits viele Erkenntnisse durch die numerische Lösung dieser Modelle gewonnen werden. Dennoch bleibt der physikalische Ursprung vieler Effekte verborgen. Grund dafür ist die Beschränkung aktueller Methoden auf bestimmte Parameterbereiche. Eine der stärksten Einschränkungen ist das Fehlen effizienter Algorithmen für tiefe Temperaturen.rnrnBasierend auf dem Blankenbecler-Scalapino-Sugar Quanten-Monte-Carlo (BSS-QMC) Algorithmus präsentieren wir eine numerisch exakte Methode, die das Hubbard-Modell und das KLM effizient bei sehr tiefen Temperaturen löst. Diese Methode wird auf den Mott-Übergang im zweidimensionalen Hubbard-Modell angewendet. Im Gegensatz zu früheren Studien können wir einen Mott-Übergang bei endlichen Temperaturen und endlichen Wechselwirkungen klar ausschließen.rnrnAuf der Basis dieses exakten BSS-QMC Algorithmus, haben wir einen Störstellenlöser für die dynamische Molekularfeld Theorie (DMFT) sowie ihre Cluster Erweiterungen (CDMFT) entwickelt. Die DMFT ist die vorherrschende Theorie stark korrelierter Systeme, bei denen übliche Bandstrukturrechnungen versagen. Eine Hauptlimitation ist dabei die Verfügbarkeit effizienter Störstellenlöser für das intrinsische Quantenproblem. Der in dieser Arbeit entwickelte Algorithmus hat das gleiche überlegene Skalierungsverhalten mit der inversen Temperatur wie BSS-QMC. Wir untersuchen den Mott-Übergang im Rahmen der DMFT und analysieren den Einfluss von systematischen Fehlern auf diesen Übergang.rnrnEin weiteres prominentes Thema ist die Vernachlässigung von nicht-lokalen Wechselwirkungen in der DMFT. Hierzu kombinieren wir direkte BSS-QMC Gitterrechnungen mit CDMFT für das halb gefüllte zweidimensionale anisotrope Hubbard Modell, das dotierte Hubbard Modell und das KLM. Die Ergebnisse für die verschiedenen Modelle unterscheiden sich stark: während nicht-lokale Korrelationen eine wichtige Rolle im zweidimensionalen (anisotropen) Modell spielen, ist in der paramagnetischen Phase die Impulsabhängigkeit der Selbstenergie für stark dotierte Systeme und für das KLM deutlich schwächer. Eine bemerkenswerte Erkenntnis ist, dass die Selbstenergie sich durch die nicht-wechselwirkende Dispersion parametrisieren lässt. Die spezielle Struktur der Selbstenergie im Impulsraum kann sehr nützlich für die Klassifizierung von elektronischen Korrelationseffekten sein und öffnet den Weg für die Entwicklung neuer Schemata über die Grenzen der DMFT hinaus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polystyrene latex particles modified at the surface with different hydrophilic functional groups were prepared by miniemulsion polymerization and applied to control the crystallization of zinc oxide in aqueous medium. The effects of both latex structure and concentration on the crystal growth, morphology, crystalline structure, and properties of the resulting zinc oxide were analyzed. Depending on the latex additive used, micro- and submicrosized crystals with a broad variety of morphologies were obtained. Among the studied latexes, the carboxyl-derived particles were shown to be a convenient system for further quantitative investigations. In this case, as the additive concentration increases, the aspect ratio of the crystals decreases systematically. Latex particles are assumed to adsorb preferentially onto the fast growing {001} faces of ZnO, interacting with the growth centers and reducing the growth rate in [001]. When zinc oxide is precipitated in the presence of latex, the polymer particles become incorporated into the growing crystals and polymer–inorganic hybrid materials are obtained. These materials are composed of an inorganic and largely undisturbed crystalline matrix in which organic latex particles are embedded. Increasing amounts of latex become incorporated into the growing crystals at increasing overall concentration in the crystallizing system. Photoluminescence (PL) spectra were measured to obtain information on defect centers. Emission spectra of all samples showed a narrow UV peak and a broad band in the green-yellow spectral region. The former emission is attributed to exciton recombination, whereas the latter seems to be related with deep-level donors. Latex appears to be a quencher of the visible emission of zinc oxide. Thus, compared to pure zincite, ZnO–latex hybrid materials show a significantly lower PL intensity in the visible range of the spectrum. Under continuous photoexcitation, a noticeable dynamic behavior of the PL is observed, which can be related to a photodesorption of adsorbed oxygen. These surface-adsorbed oxygen species seem to play a crucial role for the optical properties of the materials and may mediate the tunneling of electrons from the conduction band to preexisting deep-level traps, probably related to intrinsic defects (oxygen vacancies or interstitial zinc). The polymer particles can block the sites where oxygen adsorbs, and the disappearance of the “electron-shuttle” species leads to the observed quenching of the visible emission. Electron paramagnetic resonance (EPR) provided additional information about crystal defects with unpaired electrons. Spectra of all samples exhibit a single signal at g ≈ 1.96, typical for shallow donors. Contrary to the results of other authors, no correlation was possible between the EPR signal and the visible range of PL spectra, which suggests that centers responsible for the visible emission and the EPR signal are different.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes experiments which investigate ultracold atom ensembles in an optical lattice. Such quantum gases are powerful models for solid state physics. Several novel methods are demonstrated that probe the special properties of strongly correlated states in lattice potentials. Of these, quantum noise spectroscopy reveals spatial correlations in such states, which are hidden when using the usual methods of probing atomic gases. Another spectroscopic technique makes it possible to demonstrate the existence of a shell structure of regions with constant densities. Such coexisting phases separated by sharp boundaries had been theoretically predicted for the Mott insulating state. The tunneling processes in the optical lattice in the strongly correlated regime are probed by preparing the ensemble in an optical superlattice potential. This allows the time-resolved observation of the tunneling dynamics, and makes it possible to directly identify correlated tunneling processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendritic systems, and in particular polyphenylene dendrimers, have recently attracted considerable attention from the synthetic organic chemistry community, as well as from photophysicists, particularly in view of the search for synthetic model analogies to photoelectric materials to fabricate organic light-emitting diodes (OLEDs), and even more advanced areas of research such as light-harvesting system, energy transfer and non-host device. Geometrically, dendrimers are unique systems that consist of a core, one or more dendrons, and surface groups. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Compared to small molecular or polymeric light-emitting materials, these dendritic materials can combine the benefits of both previous classes. The high molecular weights of these dendritic macromolecules, as well as the surface groups often attached to the distal ends of the dendrons, can improve the solution processability, and thus can be deposited from solution by simple processes such as spin-coating and ink-jet printing. Moreover, even better than the traditional polymeric light-emitting materials, the well-defined monodisperse distributed dendrimers possess a high purity comparable to that of small molecules, and as such can be fabricated into high performance OLEDs. Most importantly, the emissive chromophores can be located at the core of the dendrimer, within the dendrons, and/or at the surface of the dendrimers because of their unique dendritic architectures. The different parts of the macromolecule can be selected to give the desired optoelectronic and processing properties. Therefore, the main goals of this thesis are the design and synthesis, characterization of novel functional dendrimers, e.g. polytriphenylene dendrimers for blue fluorescent, as well as iridium(III) complex cored polyphenylene dendrimers for green and red phosphorescent light emitting diodes. In additional to the above mentioned advantages of dendrimer based OLEDs, the modular molecular architecture and various functionalized units at different locations in polyphenylene dendrimers open up a tremendous scope for tuning a wide range of properties in addition to color, such as intermolecular interactions, charge mobility, quantum yield, and exciton diffusion. In conclusion, research into dendrimer containing OLEDs combines fundamental aspects of organic semiconductor physics, novel and highly sophisticated organic synthetic chemistry and elaborate device technology.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, we investigate mixtures of quantum degenerate Bose and Fermi gases of neutral atoms in threedimensional optical lattices. Feshbach resonances allow to control interspecies interactions in these systems precisely, by preparing suitable combinations of internal atomic states and applying external magnetic fields. This way, the system behaviour can be tuned continuously from mutual transparency to strongly interacting correlated phases, up to the stability boundary.rnThe starting point for these investigations is the spin-polarized fermionic band insulator. The properties of this non-interacting system are fully determined by the Pauli exclusion principle for the occupation of states in the lattice. A striking demonstration of the latter can be found in the antibunching of the density-density correlation of atoms released from the lattice. If bosonic atoms are added to this system, isolated heteronuclear molecules can be formed on the lattice sites via radio-frequency stimulation. The efficiency of this process hints at a modification of the atom number distribution over the lattice caused by interspecies interaction.rnIn the following, we investigate systems with tunable interspecies interaction. To this end, a method is developed which allows to assess the various contributions to the system Hamiltonian both qualitatively and quantitatively by following the quantum phase diffusion of the bosonic matter wave.rnBesides a modification of occupation number statistics, these measurements show a significant renormalization of the bosonic Hubbard parameters. The final part of the thesis considers the implications of this renormalization effect on the many particle physics in the mixture. Here, we demonstrate how the quantum phase transition from a bosonic superfluid to a Mott insulator state is shifted towards considerably shallower lattices due to renormalization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organische Ladungstransfersysteme weisen eine Vielfalt von konkurrierenden Wechselwirkungen zwischen Ladungs-, Spin- und Gitterfreiheitsgraden auf. Dies führt zu interessanten physikalischen Eigenschaften, wie metallische Leitfähigkeit, Supraleitung und Magnetismus. Diese Dissertation beschäftigt sich mit der elektronischen Struktur von organischen Ladungstransfersalzen aus drei Material-Familien. Dabei kamen unterschiedliche Photoemissions- und Röntgenspektroskopietechniken zum Einsatz. Die untersuchten Moleküle wurden z.T. im MPI für Polymerforschung synthetisiert. Sie stammen aus der Familie der Coronene (Donor Hexamethoxycoronen HMC und Akzeptor Coronen-hexaon COHON) und Pyrene (Donor Tetra- und Hexamethoxypyren TMP und HMP) im Komplex mit dem klassischen starken Akzeptor Tetracyanoquinodimethan (TCNQ). Als dritte Familie wurden Ladungstransfersalze der k-(BEDT-TTF)2X Familie (X ist ein monovalentes Anion) untersucht. Diese Materialien liegen nahe bei einem Bandbreite-kontrollierten Mottübergang im Phasendiagramm.rnFür Untersuchungen mittels Ultraviolett-Photoelektronenspektroskopie (UPS) wurden UHV-deponierte dünne Filme erzeugt. Dabei kam ein neuer Doppelverdampfer zum Einsatz, welcher speziell für Milligramm-Materialmengen entwickelt wurde. Diese Methode wies im Ladungstransferkomplex im Vergleich mit der reinen Donor- und Akzeptorspezies energetische Verschiebungen von Valenzzuständen im Bereich weniger 100meV nach. Ein wichtiger Aspekt der UPS-Messungen lag im direkten Vergleich mit ab-initio Rechnungen.rnDas Problem der unvermeidbaren Oberflächenverunreinigungen von lösungsgezüchteten 3D-Kristallen wurde durch die Methode Hard-X-ray Photoelectron Spectroscopy (HAXPES) bei Photonenenergien um 6 keV (am Elektronenspeicherring PETRA III in Hamburg) überwunden. Die große mittlere freie Weglänge der Photoelektronen im Bereich von 15 nm resultiert in echter Volumensensitivität. Die ersten HAXPES Experimente an Ladungstransferkomplexen weltweit zeigten große chemische Verschiebungen (mehrere eV). In der Verbindung HMPx-TCNQy ist die N1s-Linie ein Fingerabdruck der Cyanogruppe im TCNQ und zeigt eine Aufspaltung und einen Shift zu höheren Bindungsenergien von bis zu 6 eV mit zunehmendem HMP-Gehalt. Umgekehrt ist die O1s-Linie ein Fingerabdruck der Methoxygruppe in HMP und zeigt eine markante Aufspaltung und eine Verschiebung zu geringeren Bindungsenergien (bis zu etwa 2,5eV chemischer Verschiebung), d.h. eine Größenordnung größer als die im Valenzbereich.rnAls weitere synchrotronstrahlungsbasierte Technik wurde Near-Edge-X-ray-Absorption Fine Structure (NEXAFS) Spektroskopie am Speicherring ANKA Karlsruhe intensiv genutzt. Die mittlere freie Weglänge der niederenergetischen Sekundärelektronen (um 5 nm). Starke Intensitätsvariationen von bestimmten Vorkanten-Resonanzen (als Signatur der unbesetzte Zustandsdichte) zeigen unmittelbar die Änderung der Besetzungszahlen der beteiligten Orbitale in der unmittelbaren Umgebung des angeregten Atoms. Damit war es möglich, präzise die Beteiligung spezifischer Orbitale im Ladungstransfermechanismus nachzuweisen. Im genannten Komplex wird Ladung von den Methoxy-Orbitalen 2e(Pi*) und 6a1(σ*) zu den Cyano-Orbitalen b3g und au(Pi*) und – in geringerem Maße – zum b1g und b2u(σ*) der Cyanogruppe transferiert. Zusätzlich treten kleine energetische Shifts mit unterschiedlichem Vorzeichen für die Donor- und Akzeptor-Resonanzen auf, vergleichbar mit den in UPS beobachteten Shifts.rn